• Photonics Research
  • Vol. 10, Issue 5, 1317 (2022)
Guoxuan Liu1、†, Ning Xu1、†, Huaidong Yang1、2、*, Qiaofeng Tan1、3、*, and Guofan Jin1
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2e-mail: yanghd@tsinghua.edu.cn
  • 3e-mail: tanqf@mail.tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.450799 Cite this Article Set citation alerts
    Guoxuan Liu, Ning Xu, Huaidong Yang, Qiaofeng Tan, Guofan Jin. Miniaturized structured illumination microscopy with diffractive optics[J]. Photonics Research, 2022, 10(5): 1317 Copy Citation Text show less
    References

    [1] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [2] X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, L. Chen. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [3] Y. Guo, D. Li, S. Zhang, Y. Yang, J. J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, D. Li. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 175, 1430-1442(2018).

    [4] A. Markwirth, M. Lachetta, V. Mönkemöller, R. Heintzmann, W. Hübner, T. Huser, M. Müller. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat. Commun., 10, 4315(2019).

    [5] http://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html. http://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html

    [6] L. Schermelleh, R. Heintzmann, H. Leonhardt. A guide to super-resolution fluorescence microscopy. J. Cell Biol., 190, 165-175(2010).

    [7] D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, W. Zhao. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep., 3, 1116(2013).

    [8] K. Isobe, K. Toda, Q. Song, F. Kannari, H. Kawano, A. Miyawaki, K. Midorikawa. Temporal focusing microscopy combined with three-dimensional structured illumination. J. Appl. Phys., 56, 052501(2017).

    [9] Q. Song, K. Isobe, K. Midorikawa, F. Kannari. Resistance to optical distortions in three-dimensional interferometric temporal focusing microscopy. Opt. Commun., 430, 486-496(2019).

    [10] K. Inazawa, K. Isobe, T. Ishikawa, K. Namiki, A. Miyawaki, F. Kannari, K. Midorikawa. Enhancement of optical sectioning capability of temporal focusing microscopy by using time multiplexed multi-line focusing. Appl. Phys. Express, 14, 082008(2021).

    [11] H. Wang, R. Lachmann, B. Marsikova, R. Heintzmann, B. Diederich. UCsim2: 2D structured illumination microscopy using UC2(2021).

    [12] A. Sandmeyer, M. Lachetta, H. Sandmeyer, W. Hübner, T. Huser, M. Müller. DMD-based super-resolution structured illumination microscopy visualizes live cell dynamics at high speed and low cost(2019).

    [13] S. Abrahamsson, H. Blom, A. Agostinho, D. C. Jans, A. Jost, M. Müller, L. Nilsson, K. Bernhem, T. J. Lambert, R. Heintzmann, H. Brismar. Multifocus structured illumination microscopy for fast volumetric super-resolution imaging. Biomed. Opt. Express, 8, 4135-4140(2017).

    [14] A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, H. Shroff. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods, 9, 749-754(2012).

    [15] S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, M. G. Gustafsson. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods, 10, 60-63(2012).

    [16] S. Abrahamsson, R. Ilic, J. Wisniewski, B. Mehl, L. Yu, L. Chen, M. Davanco, L. Oudjedi, J. B. Fiche, B. Hajj, X. Jin, J. Pulupa, C. Cho, M. Mir, M. El Beheiry, X. Darzacq, M. Nollmann, M. Dahan, C. Wu, T. Lionnet, J. A. Liddle, C. I. Bargmann. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging. Biomed. Opt. Express, 7, 855-869(2016).

    [17] S. Abrahamsson, M. McQuilken, S. B. Mehta, A. Verma, J. Larsch, R. Ilic, R. Heintzmann, C. I. Bargmann, A. S. Gladfelter, R. Oldenbourg. Multifocus polarization microscope for 3D polarization imaging of up to 25 focal planes simultaneously. Opt. Express, 23, 7734-7754(2015).

    [18] https://www.microscope.healthcare.nikon.com/products/super-resolution-microscopes/n-sim-e. https://www.microscope.healthcare.nikon.com/products/super-resolution-microscopes/n-sim-e

    [19] J. Wang. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron., 21, 1887-1892(2006).

    [20] M. J. Price, S. Endemann, R. R. Gollapudi, R. Valencia, C. T. Stinis, J. P. Levisay, A. Ernst, N. S. Sawhney, R. A. Schatz, P. S. Teirstein. Prognostic significance of post-clopidogrel platelet reactivity assessed by a point-of-care assay on thrombotic events after drug-eluting stent implantation. Eur. Heart J., 29, 992-1000(2008).

    [21] C. D. Chin, V. Linder, S. K. Sia. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip, 12, 2118-2134(2012).

    [22] Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, O. G. Hellesø, B. S. Ahluwalia. Structured illumination microscopy using a photonic chip. Nat. Photonics, 14, 431-438(2020).

    [23] K. Yanny, N. Antipa, W. Liberti, S. Dehaeck, K. Monakhova, F. L. Liu, K. Shen, R. Ng, L. Waller. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light Sci. Appl., 9, 171(2020).

    [24] G. T. di Francia. Super-gain antennas and optical resolving power. Nuovo Cimento, 9, 426-435(1952).

    [25] P. J. Valle, M. P. Cagigal. Analytic design of multiple-axis, multifocal diffractive lenses. Opt. Lett., 37, 1121-1123(2012).

    [26] F. Vega, M. Valentino, F. Rigato, M. S. Millán. Optical design and performance of a trifocal sinusoidal diffractive intraocular lens. Biomed. Opt. Express, 12, 3338-3351(2021).

    [27] F. Wyrowski, O. Bryngdahl. Iterative Fourier-transform algorithm applied to computer holography. J. Opt. Soc. Am. A, 5, 1058-1065(1988).

    [28] M. Martínez-Corral, L. Muñoz-Escrivá, M. Kowalczyk, T. Cichocki. One-dimensional iterative algorithm for three-dimensional point-spread function engineering. Opt. Lett., 26, 1861-1863(2001).

    [29] N. Xu, Z. Kong, Q. Tan, Y. Fu. Multiring pure-phase binary optical elements to extend depth of focus. Appl. Opt., 57, 9643-9648(2018).

    [30] L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, F. S. Pavone. Multiphoton multifocal microscopy exploiting a diffractive optical element. Opt. Lett., 28, 1918-1920(2003).

    [31] Z. Li, M. Taphanel, T. Längle, J. Beyerer. Direct-imaging DOEs for high-NA multi-spot confocal microscopy. tm–Technisches Messen, 87, S40-S43(2020).

    [32] S. Dong, P. Nanda, R. Shiradkar, K. Guo, G. Zheng. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography. Opt. Express, 22, 20856-20870(2014).

    [33] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-250(1971).

    [34] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [35] W. O. Saxton. Computer Techniques for Image Processing in Electron Microscopy(1987).

    [36] Z. Kong, N. Xu, H. Xiao, Q. Tan. Effective Fresnel diffraction field extension of diffractive optical elements with plane wave incidence. Appl. Opt., 59, 3427-3431(2020).

    [37] N. Xu, G. Liu, Z. Kong, Q. Tan. Creation of super-resolution hollow beams with long depth of focus using binary optics. Appl. Phys. Express, 13, 012003(2020).

    [38] R. Brauer, F. Wyrowski, O. Bryngdahl. Diffusers in digital holography. J. Opt. Soc. Am. A, 8, 572-578(1991).

    [39] N. Xu, G. Liu, Y. Zhao, Q. Tan. Ultrahigh-aspect-ratio beam generation with super-resolution spot. Appl. Phys. Lett., 119, 094101(2021).

    [40] Q. Geng, C. Gu, J. Cheng, S. Chen. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging. Optica, 4, 674-677(2017).

    [41] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901(2012).

    [42] N. Xu, G. Liu, Q. Tan. Adjustable super-resolution microscopy with diffractive spot array illumination. Appl. Phys. Lett., 116, 254103(2020).

    [43] Z. Li, M. Taphanel, T. Längle, J. Beyerer. Confocal fluorescence microscopy with high-NA diffractive lens arrays. Appl. Opt., 61, A37-A42(2022).

    [44] https://ww2.mathworks.cn/help/images/ref/imregister.html?s_tid=doc_ta. https://ww2.mathworks.cn/help/images/ref/imregister.html?s_tid=doc_ta

    Guoxuan Liu, Ning Xu, Huaidong Yang, Qiaofeng Tan, Guofan Jin. Miniaturized structured illumination microscopy with diffractive optics[J]. Photonics Research, 2022, 10(5): 1317
    Download Citation