• Journal of Semiconductors
  • Vol. 44, Issue 1, 011901 (2023)
Xinyu Huang1, Xu Han1、2、3, Yunyun Dai1, Xiaolong Xu4, Jiahao Yan4, Mengting Huang4, Pengfei Ding1, Decheng Zhang1, Hui Chen1, Vijay Laxmi4, Xu Wu1, Liwei Liu4, Yeliang Wang4、5、*, Yang Xu2、3、**, and Yuan Huang1、5、***
Author Affiliations
  • 1Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
  • 5BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China
  • show less
    DOI: 10.1088/1674-4926/44/1/011901 Cite this Article
    Xinyu Huang, Xu Han, Yunyun Dai, Xiaolong Xu, Jiahao Yan, Mengting Huang, Pengfei Ding, Decheng Zhang, Hui Chen, Vijay Laxmi, Xu Wu, Liwei Liu, Yeliang Wang, Yang Xu, Yuan Huang. Recent progress on fabrication and flat-band physics in 2D transition metal dichalcogenides moiré superlattices[J]. Journal of Semiconductors, 2023, 44(1): 011901 Copy Citation Text show less
    References

    [1] K Von Klitzing. The quantized Hall effect. Rev Mod Phys, 58, 519(1986).

    [2] H L Stormer, D C Tsui, A C Gossard. The fractional quantum Hall effect. Rev Mod Phys, 71, S298(1999).

    [3] A Stern. Non-Abelian states of matter. Nature, 464, 187(2010).

    [4] T F Chung, Y Xu, Y P Chen. Transport measurements in twisted bilayer graphene: Electron-phonon coupling and Landau level crossing. Phys Rev B, 98, 035425(2018).

    [5] F C Wu, T Lovorn, E Tutuc et al. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys Rev Lett, 121, 026402(2018).

    [6] T X Li, S W Jiang, B W Shen et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature, 600, 641(2021).

    [7] Y Cao, V Fatemi, A Demir et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).

    [8] Y Cao, V Fatemi, S A Fang et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43(2018).

    [9] E Y Andrei, A H MacDonald. Graphene bilayers with a twist. Nat Mater, 19, 1265(2020).

    [10] L Balents, C R Dean, D K Efetov et al. Superconductivity and strong correlations in moiré flat bands. Nat Phys, 16, 725(2020).

    [11] D M Kennes, M Claassen, L D Xian et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat Phys, 17, 155(2021).

    [12] R Bistritzer, A H MacDonald. Moire bands in twisted double-layer graphene. PNAS, 108, 12233(2011).

    [13] M Yankowitz, S W Chen, H Polshyn et al. Tuning superconductivity in twisted bilayer graphene. Science, 363, 1059(2019).

    [14] X B Lu, P Stepanov, W Yang et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 574, 653(2019).

    [15] H Yang, L W Liu, H X Yang et al. Advance in two-dimensional twisted moiré materials: Fabrication, properties, and applications. Nano Res, 1(2022).

    [16] A L Sharpe, E J Fox, A W Barnard et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 365, 605(2019).

    [17] M Serlin, C L Tschirhart, H Polshyn et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 367, 900(2020).

    [18] N P Wilson, W Yao, J Shan et al. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 599, 383(2021).

    [19] K F Mak, J Shan. Semiconductor moiré materials. Nat Nanotechnol, 17, 686(2022).

    [20] E C Regan, D Q Wang, E Y Paik et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat Rev Mater, 7, 778(2022).

    [21] D Huang, J Choi, C K Shih et al. Excitons in semiconductor moiré superlattices. Nat Nanotechnol, 17, 227(2022).

    [22] K Tran, J Choi, A Singh. Moiré and beyond in transition metal dichalcogenide twisted bilayers. 2D Mater, 8, 022002(2020).

    [23] E Y Andrei, D K Efetov, P Jarillo-Herrero et al. The marvels of moiré materials. Nat Rev Mater, 6, 201(2021).

    [24] C R Woods, P Ares, H Nevison-Andrews et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat Commun, 12, 347(2021).

    [25] Y Xu, A Ray, Y T Shao et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat Nanotechnol, 17, 143(2022).

    [26] T C Song, Q C Sun, E Anderson et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science, 374, 1140(2021).

    [27] H C Xie, X P Luo, G H Ye et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat Phys, 18, 30(2022).

    [28] L Wang, E M Shih, A Ghiotto et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat Mater, 19, 861(2020).

    [29] T Devakul, V Crépel, Y Zhang et al. Magic in twisted transition metal dichalcogenide bilayers. Nat Commun, 12, 6730(2021).

    [30] M H Naik, M Jain. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys Rev Lett, 121, 266401(2018).

    [31] G Wang, A Chernikov, M M Glazov et al. Excitons in atomically thin transition metal dichalcogenides. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev Mod Phys, 90, 021001(2018).

    [32] K F Mak, D Xiao, J Shan. Light–valley interactions in 2D semiconductors. Nat Photonics, 12, 451(2018).

    [33] L Meng, Y L Wang, L Z Zhang et al. Buckled silicene formation on Ir(111). Nano Lett, 13, 685(2013).

    [34] Y F Hao, L Wang, Y Y Liu et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat Nanotechnol, 11, 426(2016).

    [35] P W Sutter, J I Flege, E A Sutter. Epitaxial graphene on ruthenium. Nat Mater, 7, 406(2008).

    [36] C Chang, W Chen, Y Chen et al. Recent progress on two-dimensional materials. Acta Phys Chim Sin, 37, 2108017(2021).

    [37] K Wang, B Huang, M K Tian et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 10, 6612(2016).

    [38] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [39] Y B Zhang, Y W Tan, H L Stormer et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201(2005).

    [40] B Radisavljevic, A Radenovic, J Brivio et al. Single-layer MoS2 transistors. Nat Nanotechnol, 6, 147(2011).

    [41] W J Zhao, Z Ghorannevis, L Q Chu et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 7, 791(2013).

    [42] Y Huang, E Sutter, N N Shi et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano, 9, 10612(2015).

    [43] Y Huang, X Wang, X Zhang et al. Raman spectral band oscillations in large graphene bubbles. Phys Rev Lett, 120, 186104(2018).

    [44] G Z Magda, J Pető, G Dobrik et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci Rep, 5, 14714(2015).

    [45] S B Desai, S R Madhvapathy, M Amani et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv Mater, 28, 4053(2016).

    [46] M Velický, G E Donnelly, W R Hendren et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano, 12, 10463(2018).

    [47] Y Huang, Y H Pan, R Yang et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun, 11, 2453(2020).

    [48] Y Huang, Y K Wang, X Y Huang et al. An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials. InfoMat, 4, e12274(2022).

    [49] F Liu, W J Wu, Y S Bai et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 367, 903(2020).

    [50] A Castellanos-Gomez, X F Duan, Z Fei et al. Van der waals heterostructures. Nat Rev Methods Primers, 2, 58(2022).

    [51] Q Fu, J Q Dai, X Y Huang et al. One-step exfoliation method for plasmonic activation of large-area 2D crystals. Adv Sci, 9, e2204247(2022).

    [52] J W Shi, X X Wu, K M Wu et al. Giant enhancement and directional second harmonic emission from monolayer WS2 on silicon substrate via fabry-Pérot micro-cavity. ACS Nano, 16, 13933(2022).

    [53] K Kim, A DaSilva, S Q Huang et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc Natl Acad Sci USA, 114, 3364(2017).

    [54] X D Chen, W Xin, W S Jiang et al. High-precision twist-controlled bilayer and trilayer graphene. Adv Mater, 28, 2563(2016).

    [55] M Z Liao, Z Wei, L J Du et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat Commun, 11, 2153(2020).

    [56] H Yu, M Z Liao, W J Zhao et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 11, 12001(2017).

    [57] F C Wu, T Lovorn, A H MacDonald. Topological exciton bands in moiré heterojunctions. Phys Rev Lett, 118, 147401(2017).

    [58] H Y Yu, G B Liu, J J Tang et al. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci Adv, 3, e1701696(2017).

    [59] K Tran, G Moody, F C Wu et al. Evidence for moiré excitons in van der waals heterostructures. Nature, 567, 71(2019).

    [60] C H Jin, E C Regan, A M Yan et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 567, 76(2019).

    [61] E M Alexeev, D A Ruiz-Tijerina, M Danovich et al. Resonantly hybridized excitons in moiré superlattices in van der waals heterostructures. Nature, 567, 81(2019).

    [62] E F Liu, E Barré, J van Baren et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature, 594, 46(2021).

    [63] O Karni, E Barré, V Pareek et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature, 603, 247(2022).

    [64] S Susarla, M H Naik, D D Blach et al. Hyperspectral imaging of excitons within a moiré unit-cell with a sub-nanometer electron probe. arXiv: 2207.13823(2022).

    [65] D Schmitt, J P Bange, W Bennecke et al. Formation of moiré interlayer excitons in space and time. Nature, 608, 499(2022).

    [66] M H Naik, E C Regan, Z C Zhang et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature, 609, 52(2022).

    [67] C L Kane, E J Mele. Quantum spin Hall effect in graphene. Phys Rev Lett, 95, 226801(2005).

    [68] M Hohenadler, F F Assaad. Correlation effects in two-dimensional topological insulators. J Phys Condens Mat, 25, 143201(2013).

    [69] T Yoshioka, A Koga, N Kawakami. Quantum phase transitions in the Hubbard model on a triangular lattice. Phys Rev Lett, 103, 036401(2009).

    [70] H Y Yang, A M Läuchli, F Mila et al. Effective spin model for the spin-liquid phase of the Hubbard model on the triangular lattice. Phys Rev Lett, 105, 267204(2010).

    [71] K Aryanpour, W E Pickett, R T Scalettar. Dynamical Mean-field study of the Mott transition in the half-filled Hubbard model on a triangular lattice. Phys Rev B, 74, 085117(2006).

    [72] P Sahebsara, D Sénéchal. Hubbard model on the triangular lattice: Spiral order and spin liquid. Phys Rev Lett, 100, 136402(2008).

    [73] T Shirakawa, T Tohyama, J Kokalj et al. Ground state phase diagram of the triangular lattice Hubbard model by density matrix renormalization group method. Phys Rev B, 96, 205130(2017).

    [74] A Szasz, J Motruk, M P Zaletel et al. Chiral spin liquid phase of the triangular lattice Hubbard model: A density matrix renormalization group study. Phys Rev X, 10, 021042(2020).

    [75] Y H Tang, L Z Li, T X Li et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 579, 353(2020).

    [76] E C Regan, D Wang, C Jin et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 579, 359(2020).

    [77] Y Shimazaki, I Schwartz, K Watanabe et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 580, 472(2020).

    [78] Y Xu, S Liu, D A Rhodes et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature, 587, 214(2020).

    [79] C H Jin, Z Tao, T X Li et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat Mater, 20, 940(2021).

    [80] T X Li, J C Zhu, Y H Tang et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat Nanotechnol, 16, 1068(2021).

    [81] X Huang, T M Wang, S N Miao et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat Phys, 17, 715(2021).

    [82] E F Liu, T Taniguchi, K Watanabe et al. Excitonic and valley-polarization signatures of fractional correlated electronic phases in a WSe2/WS2 moiré superlattice. Phys Rev Lett, 127, 037402(2021).

    [83] H Y Li, S W Li, E C Regan et al. Imaging two-dimensional generalized Wigner crystals. Nature, 597, 650(2021).

    [84] Y Xu, K F Kang, K Watanabe et al. A tunable bilayer Hubbard model in twisted WSe2. Nat Nanotechnol, 17, 934(2022).

    [85] Y H Zhang, D N Sheng, A Vishwanath. SU(4) chiral spin liquid, exciton supersolid, and electric detection in moiré bilayers. Phys Rev Lett, 127, 247701(2021).

    [86] T X Li, S W Jiang, L Z Li et al. Continuous Mott transition in semiconductor moiré superlattices. Nature, 597, 350(2021).

    [87] M Zhang, X Zhao, K Watanabe et al. Pomeranchuk effect and tunable quantum phase transitions in 3L-MoTe2/WSe2. Phys Rev X, 12, 041015(2022).

    [88] F C Wu, T Lovorn, E Tutuc et al. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys Rev Lett, 122, 086402(2019).

    [89] H N Pan, F C Wu, S D Sarma. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya interaction in twisted bilayer WSe2. Phys Rev Res, 2, 033087(2020).

    [90] B T Zhou, S Egan, M Franz. Moiré flat Chern bands and correlated quantum anomalous Hall states generated by spin-orbit couplings in twisted homobilayer MoS2. Phys Rev Res, 4, L012032(2022).

    [91] Y Zhang, T Devakul, L Fu. Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers. Proc Natl Acad Sci USA, 118, e2112673118(2021).

    [92] L Rademaker. Spin-orbit coupling in transition metal dichalcogenide heterobilayer flat bands. Phys Rev B, 105, 195428(2022).

    [93] Y M Xie, C P Zhang, J X Hu et al. Valley-polarized quantum anomalous hall state in moiré MoTe2/WSe2 heterobilayers. Phys Rev Lett, 128, 026402(2022).

    [94] R Ribeiro-Palau, C J Zhang, K Watanabe et al. Twistable electronics with dynamically rotatable heterostructures. Science, 361, 690(2018).

    [95] C Hu, T Y Wu, X Y Huang et al. In-situ twistable bilayer graphene. Sci Rep, 12, 204(2022).

    [97] D G Purdie, N M Pugno, T Taniguchi et al. Cleaning interfaces in layered materials heterostructures. Nat Commun, 9, 5387(2018).

    [98] H Q Li, U Kumar, K Sun et al. Spontaneous fractional Chern insulators in transition metal dichalcogenides Moire superlattices. Phys Rev Res, 3, L032070(2021).

    [99] Z Bi, L Fu. Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide. Nat Commun, 12, 642(2021).

    Xinyu Huang, Xu Han, Yunyun Dai, Xiaolong Xu, Jiahao Yan, Mengting Huang, Pengfei Ding, Decheng Zhang, Hui Chen, Vijay Laxmi, Xu Wu, Liwei Liu, Yeliang Wang, Yang Xu, Yuan Huang. Recent progress on fabrication and flat-band physics in 2D transition metal dichalcogenides moiré superlattices[J]. Journal of Semiconductors, 2023, 44(1): 011901
    Download Citation