• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201079 (2020)
Zijie Lin, Jian Xu*, and Ya Cheng
Author Affiliations
  • State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.3788/IRLA20201079 Cite this Article
    Zijie Lin, Jian Xu, Ya Cheng. Laser assisted 3D metal microprinting (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201079 Copy Citation Text show less
    References

    [1] Lipson H, Kurman M. Fabricated: The New Wld of 3D Printing[M]. USA: John Wiley & Sons, 2013.

    [2] Chua C, Leong K. 3D Printing Additive Manufacturing: Principles Applications[M]. Singape: Wld Scientific Publishing Co Pte Ltd, 2017.

    [3] M Vaezi, H Seitz, S Yang. Erratum to: A review on 3D micro-additive manufacturing technologies. Advanced Manufacturing Technology, 67, 1957(2013).

    [4] F Kotz, K Arnold, W Bauer. Three-dimensional printing of transparent fused silica glass. Nature, 544, 337-339(2017).

    [5] C Parra-Cabrera, C Achille, S Kuhn. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chemical Society Reviews, 47, 209-230(2018).

    [6] A Kotikian, R Truby, J Boley. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Advanced Materials, 30, 170616(2018).

    [7] J Lind, T Busbee, A Valentine. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature Materials, 16, 303-308(2017).

    [8] H Hwang, W Zhu, G Victorine. 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches. Small Methods, 2, 1700277(2018).

    [9] A Ishikawa, T Kato, N Takeyasu. Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials. Applied Physics Letters, 111, 183102(2017).

    [10] R Bernasconi, C Credi, M Tironi. Electroless metallization of stereolithographic photocurable resins for 3D printing of functional microdevices. Journal of The Electrochemical Society, 164, B3059-B3066(2017).

    [11] R Bernasconi, F Cuneo, E Carrara. Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures. Materials Horizons, 5, 699-707(2018).

    [12] K M Huang, S C Tsai, Y K Lee. Selective metallic coating of 3D-printed microstructures on flexible substrates. RSC Advances, 7, 51663-51669(2017).

    [13] R T Hill, J L Lyon, R Allen. Microfabrication of three-dimensional bioelectronic architectures. Journal of America Chemical Society, 127, 10707-10711(2005).

    [14] R A Farrer, C N LaFratta, L Li. Selective functionalization of 3-D polymer microstructures. America Chemical Society, 128, 1796-1797(2006).

    [15] F Formanek, N Takeyasu, T Tanaka. Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Applied Physics Letters, 88, 083110(2006).

    [16] Y S Chen, A Tal, D B Torrance. Fabrication and characterization of three-dimensional silver-coated polymeric microstructures. Advanced Functional Materials, 16, 1739-1744(2006).

    [17] K Mukai, T Yoshimura, S Maruo. Micromolding of three-dimensional metal structures by electroless plating of photopolymerized resin. Japanese Journal of Applied Physics, 46, 2761-2763(2007).

    [18] L Hirt, A Reiser, R Spolenak. Additive manufacturing of metal structures at the micrometer scale. Advanced Materials, 29, 1604211(2017).

    [19] A Reiser, L Koch, K A Dunn. Metals by micro-scale additive manufacturing: Comparison of microstructure and mechanical properties. Advanced Functional Materials, 30, 1910491(2020).

    [20] Z Zheng, H Lee, T H Weisgraber. Ultra-light, ultra-stiff mechanical metamaterials. Science, 344, 1373-1377(2014).

    [21] A Campo, E Arzt. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chemical Reviews, 108, 911-9459(2008).

    [22] M A Verschuuren, H A Sprang, A Polman. Large-area nanopatterns: improving LEDs, lasers, and photovoltaics. Nanotechnology, 22, 505201(2011).

    [23] B Mosadegh, G Xiong, S Dunham. Current progress in 3D printing for cardiovascular tissue engineering. Biomedical Materials, 10, 034002(2015).

    [24] M M Stanton, C Trichet-Paredes, S Sanchez. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab on a Chip, 15, 1634-1637(2015).

    [25] H T Chen, W J Padilla, J M Zide. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [26] Q Wang, E T Rogers, B Gholipour. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10, 60-65(2016).

    [27] Q Sun, K Ueno, H Yu. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light: Science & Applications, 2, e118(2013).

    [28] C Zhu, D Du, A Eychmuller. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chemical Reviews, 115, 8896-8943(2015).

    [29] J Bohandy, B F Kim, F J Adrian. Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60, 1538(1986).

    [30] F Matthias, P Ralph, B Ton. Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films. Additive Manufacturing, 24, 391-399(2018).

    [31] T C Röder, J R Köhler. Physical model for the laser induced forward transfer process. Applied Physics Letters, 100, 71603(2012).

    [32] A I Kuznetsov, R Kiyan, B N Chichkov. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Optics Express, 18, 21198-21203(2010).

    [33] M Zenou, Z Kotler. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures. Scientific Reports, 5, 17265(2015).

    [34] C W Visser, R Pohl, C Sun. Toward 3D printing of pure metals by laser-induced forward transfer. Advanced Materials, 27, 4087-4092(2015).

    [35] M Zenou, A Sa’ar, Z Kotler. Laser transfer of metals and metal alloys for digital microfabrication of 3D objects. Small, 11, 4082-4089(2015).

    [36] M Zenou, A Sa’ar, Z Kotler. Digital laser printing of aluminum micro-structure on thermally sensitive substrates. Journal of Physics D: Applied Physics, 48, 205303(2015).

    [37] S Winter, M Zenou, Z Kotler. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell. Journal of Physics D: Applied Physics, 49, 165310(2016).

    [38] in't Veld B Huis, L Overmeyer, M Schmidt, K Wegener, A Malshe, P Bartolo. Si/Ge micro additive manufacturing using ultra-short laser pulses. CIRP Annals—Manufacturing Technology, 64, 701-724(2015).

    [39] M Zenou, Z Kotler. Printing of metallic 3D micro-objects by laser induced forward transfer. Optics Express, 24, 1431-1446(2016).

    [40] A Piqué, R C Y Auyeung, H Kim. Laser 3D micro-manufacturing. Journal of Physics D: Applied Physics, 49, 223001(2016).

    [41] E Breckenfeld, H Kim, R C Y Auyeung. Laser-induced forward transfer of silver nanopaste for microwave interconnects. Applied Surface Science, 331, 254-261(2015).

    [42] J Wang, R C Y Auyeung, H Kim. Three-dimensional printing of interconnects by laser direct-write of silver nanopastes. Advanced Materials, 22, 4462-4466(2010).

    [43] A Piqué, R C Y Auyeung, H Kim. Digital microfabrication by laser decal transfer. Journal of Laser Micro/Nanoengineering, 3, 163-168(2008).

    [44] S A Mathews, R C Y Auyeung, H Kim. High-speed video study of laser-induced forward transfer of silver nano-suspensions. Journal of Applied Physics, 114, 64910(2013).

    [45] M Zenou, A Sa’ar, Z Kotler. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties. Nanotechnology, 27, 15203(2016).

    [46] F Stellacci, C A Bauer, T Meyer-Friedrichsen. Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Advanced Materials, 14, 194-198(2002).

    [47] S Maruo, T Saeki. Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Optics Express, 16, 1174-1179(2008).

    [48] A Ishikawa, T Tanaka, S Kawata. Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Applied Physics Letters, 89, 113102(2006).

    [49] T Tanaka, A Ishikawa, S Kawata. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Applied Physics Letters, 88, 081107(2006).

    [50] B B Xu, D D Zhang, X L Liu. Fabrication of microelectrodes based on precursor doped with metal seeds by femtosecond laser direct writing. Optics Letters, 39, 434-437(2014).

    [51] B B Xu, H Xia, L G Niu. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small, 6, 1762-1766(2010).

    [52] Y Cao, N Takeyasu, T Tanaka. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small, 5, 1144-1148(2009).

    [53] Tanaka T, Ishikawa A, Amemiya T. Threedimensional twophoton laser fabrication f metals, polymers, magooptical materials[C]Photonics West, 2015: 935321.

    [54] W E Lu, Y L Zhang, M L Zheng. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction. Optical Materials Express, 3, 1660-1673(2013).

    [55] E Blasco, J Müller, P Müller. Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Advanced Materials, 28, 3592-3595(2016).

    [56] A Vyatskikh, S Delalande, A Kudo. Additive manufacturing of 3D nano-architected metals. Nature Communications, 9, 593(2018).

    [57] M Focsan, A M Craciun, S Astilean. Two-photon fabrication of three-dimensional silver microstructures in microfluidic channels for volumetric surface-enhanced Raman scattering detection. Optical Materials Express, 6, 1587-1593(2016).

    [58] Exner H, Regenfuss P, Hartwig L, et al. ive laser micro sintering with a novel process[C]Proceedings of SPIEThe International Society f Optical Engineering, 2003, 5063(1): 145151.

    [60] P Promoppatum, R Onler, S C Yao. Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. Journal of Materials Processing Technology, 240, 262-273(2017).

    [61] Hongbo Lan, 兰红波, Dichen Li, 李涤尘, 卢秉恒, Bingheng Lu. Micro-and nanoscale 3D printing. Sci Sin Tech, 45, 919-940(2015).

    [62] P Regenfuss, A Streek, L Hartwig. Principles of laser micro sintering. Rapid Prototyping Journal, 13, 204-212(2007).

    [63] P Regenfuß, R Ebert. Exner H. Laser micro sintering-a versatile instrument for the generation of microparts. Laser Technik Journal, 4, 26-31(2007).

    [64] H Exner, M Horn, A Streek. Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Virtual and Physical Prototyping, 3, 3-11(2008).

    [65] K Subramanian, N Vail, J Barlow. Selective laser sintering of alumina with polymer binders. Rapid Prototyping Journal, 1, 24-35(1995).

    [66] Chen J M, Wang X B, Zuo T C. The micro fabrication using ive laser sintering micron metal powder[C]Proceedings of SPIEThe International Society f Optical Engineering, 2003, 5116: 647~651.

    [67] Regenfuss P, Hartwig L, Klotzer S, et al. Microparts by a novel modification of ive laser sintering[C]Rapid Prototyping Manufacturing Conference, 2004: 17.

    [68] Y P Kathuria. Microstructuring by selective laser sintering of metallic powder. Surface and coatings technology, 116-119, 643-647(1999).

    [69] Ebert R, Regenfuss P, Klotzer S, et al. Process assembly f μmscale SLS, reaction sintering, CVD[C]Proceedings of SPIEThe International Society f Optical Engineering, 2003, 5063: 183188.

    [70] 何飞, Fei He, 程亚, Ya Cheng. Femtosecond laser micromachining: Frontier in laser precision micromachining. Chinese Journal of Lasers, 34, 595-620(2007).

    [71] J M Lourtioz. Photonic crystals writing 3D photonic structures with light. Nature Materials, 3, 427-428(2004).

    [72] S Maruo, J T Fourkas. Recent progress in multiphoton microfabrication. Laser Photonics Reviews, 2, 100-111(2008).

    [73] T M Hsieh, C W Ng, K Narayanan. Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials, 31, 7648-7652(2010).

    [74] S D Gittard, R J Narayan. Laser direct writing of micro- and nano-scale medical devices. Expert Revies of Medical Devices, 7, 343-356(2010).

    [75] C Z Liao, A Wuethrich, M Trau. A material odyssey for 3D nano/microstructures: two photon polymerization-based nanolithography in bioapplications. Applied Materials Today, 19, 100635(2020).

    [76] Z C Ma, Y L Zhang, B Han. Femtosecond-laser direct writing of metallic micro/ nanostructures: from fabrication strategies to future applications. Small Methods, 2, 1700413(2018).

    [77] S Tottori, L Zhang, F Qiu. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Advanced Materials, 24, 811-816(2012).

    [78] E H Waller, S Dix, J Gutsche. Functional metallic microcomponents via liquid-phase multiphoton direct laser writing: a review. Micromachines, 10, 827(2019).

    [79] S Kim, F Qiu, S Kim. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Advanced Materials, 25, 5863-5868(2013).

    [80] T Y Huang, M S Sakar, A Mao. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Advanced Materials, 27, 6644-6650(2015).

    [81] Iwata F, Metoki J. Microelectrophesis deposition using a nanopipette f threedimensional structures[C]IEEE, 2014: 304307.

    [82] T Takai, H Nakao, F Iwata. Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Optics Express, 22, 28109-28117(2014).

    [83] F Iwata, M Kaji, A Suzuki. Local electrophoresis deposition of nanomaterials assisted by a laser trapping technique. Nanotechnology, 20, 235303(2009).

    [84] T Matsuura, T Takai, F Iwata. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication. Japanese Journal of Applied Physics, 56, 105502(2017).

    [85] F Iwata, J Metoki. Local electrophoretic deposition using a nanopipette for micropillar fabrication. Japanese Journal of Applied Physics, 56, 126701(2017).

    [86] J Kaschke, M Wegener. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Optics Letters, 40, 3986-3989(2015).

    [87] K Kaneko, K Yamamoto, S Kawata. Metal-nanoshelled three-dimensional photonic lattices,. Optics Letters, 33, 1999(2008).

    [88] R Malureanu, A Alabastri, W Cheng. Enhanced broadband optical transmission in metallized woodpiles. Applied Physics A, 103, 749-753(2010).

    [89] j Li, M D M Hossain, B Jia. Three-dimensional hybrid photonic crystals merged with localized plasmon resonances. Optics Express, 18, 4491(2010).

    [90] A Radke, T Gissibl, T Klotzbucher. Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Advanced Materials, 23, 3018-3021(2011).

    [91] S Tottori, L Zhang, K E Peyer. Assembly, disassembly, and anomalous propulsion of microscopic helices. Nano Letters, 13, 4263-4268(2013).

    [92] K M Kulinowski, P Jiang, H Vaswani. Porous metals from colloidal templates. Advanced Materials, 12, 833-838(2000).

    [93] P Nagpal, S E Han, A Stein. Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals. Nano Letters, 8, 3238-3243(2008).

    [94] T A Walsh, J A Bur, J S Kim. High-temperature metal coating for modification of photonic band edge position. Journal of the Optical Society of America B, 26, 1450-1455(2009).

    [95] V Mizeikis, S Juodkazis, R Tarozaite. Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region. Optics Express, 15, 8454-8456(2007).

    [96] O M Marago, P H Jones, P G Gucciardi. Optical trapping and manipulation of nanostructures. Nature Nanotechnol, 8, 807-819(2013).

    [97] M Daly, M Sergides, S N Chormaic. Optical trapping and manipulation of micrometer and submicrometer particles. Laser Photonics Reviews, 9, 309-329(2015).

    [98] M Gu, H Bao, X Gan. Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy. Light: Science & Applications, 3, e126(2014).

    [99] A Lehmuskero, P Johansson, H Rubinsztein-Dunlop. Laser trapping of colloidal metal nanoparticles. ACS Nano, 9, 3453-3469(2015).

    [100] A Ashkin, J M Dziedzic, J E Bjorkholm. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, 288-290(1986).

    [101] K Dholakia, P Reece. Optical micromanipulation takes hold. Nano Today, 1, 18-27(2006).

    [102] D G Grier. Grier, A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [103] H Wang, S Liu, Y L Zhang. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing. Advanced Materials, 16, 024805(2015).

    [104] B B Xu, R Zhang, H Wang. Laser patterning of conductive gold micronanostructures from nanodots. Nanoscale, 4, 6955(2012).

    [105] J Xu, X Li, Y Zhong. Glass-channel molding assisted 3D printing of metallic microstructures enabled by femtosecond laser internal processing and microfluidic electroless plating. Advanced Materials Technologies, 3, 1800372(2018).

    [106] Y Kondo, J Qiu, T Mitsuyu. Three-dimensional microdrilling of glass by multiphoton process and chemical etching. Japanese Journal Applied Physics, 38, L1146(1999).

    [107] A M Ius, S Juodkazis, M Watanabe. Femtosecond laser-assisted three-dimensional microfabrication in silica. Optics Letters, 26, 277-279(2001).

    [108] M Masuda, K Sugioka, Y Cheng. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Applied Physics A, 76, 857-860(2003).

    [109] Y Bellouard, A Said, M Dugan. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Optics Express, 12, 2120-2129(2004).

    [110] K Itoh, W Watanabe, S Nolte. Ultrafast processes for bulk modification of transparent materials. MRS Bulletin, 31, 620-625(2006).

    [111] R R Gattass, E Mazur. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219-225(2008).

    [112] K Sugioka, Y Cheng. Ultrafast lasers-reliable tools for advanced materials processing. Light: Science & Applications, 3, e149-e149(2014).

    [113] K Sugioka, Y Cheng. Femtosecond laser three-dimensional micro- and nanofabrication. Applied Physics Reviews, 1, 041303(2014).

    [114] F Madani-Grasset, Y Bellouard. Femtosecond laser micromachining of fused silica molds. Optics Express, 18, 21826-21840(2010).

    [115] A Schaap, Y Bellouard. Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass. Optical Materials Express, 3, 1428-1437(2013).

    [116] M Tovar, T Weber, S Hengoju. 3D-glass molds for facile production of complex droplet microfluidic chips. Biomicrofluidics, 12, 024115(2018).

    [117] P Wang, W Chu, W Li. Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution. Micromachines, 10, 565(2019).

    [118] E D Goluch, K A Shaikh, K Ryu. Microfluidic method for in-situ deposition and precision patterning of thin-film metals on curved surfaces. Applied Physics Letters, 85, 3629-3631(2004).

    [119] P Lang, S Neiß, P Woias. Fabrication of three-dimensional freestanding metal micropipes for microfluidics and microreaction technology. Journal of Micromechanics and Microengineering, 21, 125024(2011).

    [120] F Muench, M Oezaslan, I Svoboda. Electroless plating of ultrathin palladium films: self-initiated deposition and application in microreactor fabrication. Materials Research Express, 2, 105010(2015).

    Zijie Lin, Jian Xu, Ya Cheng. Laser assisted 3D metal microprinting (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201079
    Download Citation