• Acta Optica Sinica
  • Vol. 39, Issue 10, 1016001 (2019)
Tongtong Li1, Mingjie Zhang1, Kangzhen Tian1, Xiang Zhang2、3, Xiao Yuan2、3, Anping Yang1, and Zhiyong Yang1、2、3、*
Author Affiliations
  • 1Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
  • 2School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
  • 3Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou, Jiangsu 215006, China
  • show less
    DOI: 10.3788/AOS201939.1016001 Cite this Article Set citation alerts
    Tongtong Li, Mingjie Zhang, Kangzhen Tian, Xiang Zhang, Xiao Yuan, Anping Yang, Zhiyong Yang. Femtosecond Laser-Induced Damage on Ge-Sb-S Chalcogenide Glass[J]. Acta Optica Sinica, 2019, 39(10): 1016001 Copy Citation Text show less
    References

    [1] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014). http://www.nature.com/nphoton/journal/v8/n11/nphoton.2014.213/metrics/

    [2] Wang X M, Yang C F, Dai S X et al. Spectroscopic analysis of ethanol solution detection with Ge15Sb20Se65 chalcogenide glass tapered fiber[J]. Acta Optica Sinica, 38, 0606001(2018).

    [3] Yu Y, Gai X, Ma P et al. Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide[J]. Optics Letters, 41, 958-961(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-5-958

    [4] Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [5] Wang X F, Yang J F, Yan X T et al. Fabrication and optical performances measurements of flexible chalcogenide imaging fiber bundles[J]. Optics and Precision Engineering, 25, 3137-3144(2017).

    [6] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [7] Qi S S, Zhang B, Zhai C C et al. High-resolution chalcogenide fiber bundles for longwave infrared imaging[J]. Optics Express, 25, 26160-26165(2017). http://europepmc.org/abstract/MED/29041276

    [8] Wang X G, Jiao K, Chen P et al. Preparation of wide-band gap Ge-Se chalcohalide glass and its fiber properties[J]. Acta Optica Sinica, 39, 0406001(2019).

    [9] Mo K D, Zhai B, Li J F et al. Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers[J]. Chinese Physics B, 26, 054216(2017). http://www.cqvip.com/QK/85823A/20175/671962868.html

    [10] Martinez R A, Plant G, Guo K W et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers[J]. Optics Letters, 43, 296-299(2018). http://europepmc.org/abstract/MED/29328264

    [11] Zhou T F, Zhu Z C, Liu X H et al. A review of the precision glass molding of chalcogenide glass (ChG) for infrared optics[J]. Micromachines, 9, 337(2018).

    [12] Cui J, Xiao X S, Xu Y T et al. Mid-infrared emissions of Dy 3+doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser[J]. Optical Materials Express, 8, 2089-2102(2018).

    [13] Wang Y Y, Dai S X, Li G T et al. 1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime[J]. Optics Letters, 42, 3458-3461(2017). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-42-17-3458

    [14] Gattass R R, Brandon Shaw L, Nguyen V Q et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 18, 345-348(2012). http://www.sciencedirect.com/science/article/pii/S1068520012000727

    [15] Kedenburg S, Steinle T, Mörz F et al. High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber[J]. Optics Letters, 40, 2668-2671(2015). http://europepmc.org/abstract/MED/26030585

    [16] Zhao Z M, Wang X S, Dai S X et al. 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 41, 5222-5225(2016).

    [17] Messaddeq S H, Vallée R, Soucy P et al. Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation[J]. Optics Express, 20, 29882-29889(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-28-29882

    [18] You C Y, Dai S X, Zhang P Q et al. Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses[J]. Scientific Reports, 7, 6497(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5529446/

    [19] Zhang Y, Xu Y S, You C Y et al. Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses[J]. Optics Express, 25, 8886-8895(2017). http://europepmc.org/abstract/MED/28437963

    [20] Choi J W, Han Z H, Sohn B U et al. Nonlinear characterization of GeSbS chalcogenide glass waveguides[J]. Scientific Reports, 6, 39234(2016). http://europepmc.org/articles/PMC5175264/

    [21] Yang Y, Chen Y X, Liu Y H et al. Tailoring structure and property of Ge-As-S chalcogenide glass[J]. Acta Physica Sinica, 65, 127801(2016).

    [22] Zhang B, Yu Y, Zhai C C et al. High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber[J]. Journal of the American Ceramic Society, 99, 2565-2568(2016).

    [23] Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measurement Science and Technology, 12, 1784-1794(2001). http://www.ingentaconnect.com/content/iop/mst/2001/00000012/00000011/art00305

    [24] Lenzner M, Krüger J, Sartania S et al. Femtosecond optical breakdown in dielectrics[J]. Physical Review Letters, 80, 4076-4079(1998). http://prola.aps.org/abstract/PRL/v80/i18/p4076_1

    [25] Qiu J R[M]. Femtosecond laser processing technology: fundamentals and applications, 23-34(2018).

    [27] Li Z B, Lin C G, Qu G S et al. Phase separation in nonstoichiometry Ge-Sb-S chalcogenide glasses[J]. Journal of the American Ceramic Society, 97, 793-797(2014). http://onlinelibrary.wiley.com/doi/10.1111/jace.12808/full

    [28] Yao Y B, Xie T, Gao Y M[M]. Shanghai: Shanghai Scientific & Technical Publishers, 105-112(1985).

    [29] Luo Y R[M]. Handbook of chemical bond energy, 263-302(2005).

    Tongtong Li, Mingjie Zhang, Kangzhen Tian, Xiang Zhang, Xiao Yuan, Anping Yang, Zhiyong Yang. Femtosecond Laser-Induced Damage on Ge-Sb-S Chalcogenide Glass[J]. Acta Optica Sinica, 2019, 39(10): 1016001
    Download Citation