• Acta Optica Sinica
  • Vol. 39, Issue 6, 0601004 (2019)
Chuankai Luo, Fang Lu, Zhifang Miao, and Xiang’e Han*
Author Affiliations
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, Shaanxi 710071, China
  • show less
    DOI: 10.3788/AOS201939.0601004 Cite this Article Set citation alerts
    Chuankai Luo, Fang Lu, Zhifang Miao, Xiang’e Han. Propagation and Spreading of Radial Vortex Beam Array in Atmosphere[J]. Acta Optica Sinica, 2019, 39(6): 0601004 Copy Citation Text show less
    Radial distribution of beam array
    Fig. 1. Radial distribution of beam array
    Numerical simulation of beam propagtion
    Fig. 2. Numerical simulation of beam propagtion
    Light field distributions of radial vortex beam array at different propagation distances in free space. (a) z=0 m, intensity; (b) z=0 m, phase; (c) z=500 m, intensity; (d) z=500 m, phase
    Fig. 3. Light field distributions of radial vortex beam array at different propagation distances in free space. (a) z=0 m, intensity; (b) z=0 m, phase; (c) z=500 m, intensity; (d) z=500 m, phase
    Light field distributions of radial vortex beam array at different propagation distances in free space. (a) z=1000 m, intensity; (b) z=2000 m, intensity; (c) z=5000 m, intensity; (d) z=1000 m, phase; (e) z=2000 m, phase; (f) z=5000 m, phase
    Fig. 4. Light field distributions of radial vortex beam array at different propagation distances in free space. (a) z=1000 m, intensity; (b) z=2000 m, intensity; (c) z=5000 m, intensity; (d) z=1000 m, phase; (e) z=2000 m, phase; (f) z=5000 m, phase
    Light field distributions of radial vortex beam array at different propagation distances in turbulence (Cn2=1×10-14 m-2/3). (a)-(c) Instantaneous; (d)-(f) long exposure
    Fig. 5. Light field distributions of radial vortex beam array at different propagation distances in turbulence (Cn2=1×10-14 m-2/3). (a)-(c) Instantaneous; (d)-(f) long exposure
    Relative beam width versus transmission distance under different waist widths. (a) Single vortex beam; (b) vortex beam array
    Fig. 6. Relative beam width versus transmission distance under different waist widths. (a) Single vortex beam; (b) vortex beam array
    Relative beam width versus transmission distance under different topological charges. (a) Single vortex beam; (b) vortex beam array
    Fig. 7. Relative beam width versus transmission distance under different topological charges. (a) Single vortex beam; (b) vortex beam array
    Relative beam width versus transmission distance under different turbulence intensities. (a) Single vortex beam; (b) vortex beam array
    Fig. 8. Relative beam width versus transmission distance under different turbulence intensities. (a) Single vortex beam; (b) vortex beam array
    Relative beam width versus transmission distance under different turbulence outer scales. (a) Single vortex beam; (b) vortex beam array
    Fig. 9. Relative beam width versus transmission distance under different turbulence outer scales. (a) Single vortex beam; (b) vortex beam array
    Relative beam width versus transmission distance under different turbulence inner scales. (a) Single vortex beam; (b) vortex beam array
    Fig. 10. Relative beam width versus transmission distance under different turbulence inner scales. (a) Single vortex beam; (b) vortex beam array
    ParameterValueParameterValue
    Wavelength λ /μm1.55Beam waist w0/mm10-30
    Number of radial beams N06Distance between sub-beam and center r0w0
    Topological charge l1-3Number of samples512×512
    Grid size of phase screen /mm2Turbulence intensity Cn2/m-2/31×10-16-1×10-13
    Inner scale l0/mm3-10Outer scale L0/m1-10
    Table 1. Parameters for numerical simulation
    Chuankai Luo, Fang Lu, Zhifang Miao, Xiang’e Han. Propagation and Spreading of Radial Vortex Beam Array in Atmosphere[J]. Acta Optica Sinica, 2019, 39(6): 0601004
    Download Citation