• Infrared and Laser Engineering
  • Vol. 47, Issue 10, 1006008 (2018)
Zhao Lijie1、*, Zhou Yanzong1, Xia Haiyun1, Wu Tengfei2, and Han Jibo2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1006008 Cite this Article
    Zhao Lijie, Zhou Yanzong, Xia Haiyun, Wu Tengfei, Han Jibo. Overview of distance measurement with femtosecond optical frequency comb[J]. Infrared and Laser Engineering, 2018, 47(10): 1006008 Copy Citation Text show less
    References

    [1] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking [J]. Applied Physics Letter, 1981, 38(9): 671-672.

    [2] Hu M, Wang C Y, Li Y, et al. Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber [J]. Optics Express, 2004, 12(25): 1932-1937.

    [3] Yeh K-L, Hoffmann M C, Hebling J, et al. Generation of ultrashort terahertz pulses by optical rectification [J]. Applied Physics Letters, 2007, 90: 171121.

    [4] Theuer M, Molter D, Maki K, et al. Terahertz generation in an actively controlled femtosecond enhancement cavity [J]. Applied Physics Letters, 2008, 93: 041119.

    [5] Liu F, Song Y, Xing Q, et al. Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier [J]. IEEE Photonics Technology Letters, 2010, 22(11): 814-816.

    [6] Zhang Y, Chen Q, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing [J]. Nano Today, 2010, 5: 435-448.

    [7] Dong Zhiwei, Zhang Weibin, Zheng Liwei, et al. Processing of diamond applying femtosecond and nanosecond laser pulses [J]. Infrared and Laser Engineering, 2015, 44(3): 893-896. (in Chinese)

    [8] Zhang Junzhan, Wang Yuqian, Zhang Ying, et al. Effect of feeding speed on micro-hole drilling in TiC ceramic by femtosecond laser [J]. Optics and Precision Engineering, 2015, 23(6): 1565-1571. (in Chinese)

    [9] Liang Jufa, Jing Shimei, Meng Aihua, et al. Integrated optical sensor based on a FBG in parallel with a LPG [J]. Chinese Optics, 2016, 9(3): 329-334. (in Chinese)

    [10] Tirlapur Uday K, Konig K. Cell biology: Targeted transfection by femtosecond laser [J]. Nature, 2002, 418(6895): 290-291.

    [11] Stevenson D, Agate B, Tsampoula X, et al. Femtosecond optical transfection of cells: Viability and efficiency [J]. Optics Express, 2006, 14(16): 7125-7133.

    [12] Trtica M S, Gakovic B M, Radak B B, et al. Material surface modification by ns, ps and fs laser pulses [J]. Optics and Precision Engineering, 2011, 19(2): 221-227.

    [13] Liu Dongxu, Xia Hong, Sun Yunlu, et al. Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles [J]. Chinese Optics, 2014, 7(4): 608-615. (in Chinese)

    [14] Yang Chengjuan, Tian Yanling, Cui Liangyu, et al. Ultrafast laser-induced changes in titanium [J]. Infrared and Laser Engineering, 2015, 44(7): 2002-2007. (in Chinese)

    [15] Yuan Wei, Xing Xin, Han Dongjia, et al. Ultrafast laser pre-damage dynamics process in Al2O3/SiO2 high reflectors [J]. Infrared and Laser Engineering, 2016, 45(12): 1206013. (in Chinese)

    [16] Song Yinglin, Li Zhongguo. Ultrafast nonlinear refractive effect and mechanism of solvent nitrobenzene [J]. Infrared and Laser Engineering, 2017, 46(5): 0502001. (in Chinese)

    [17] Wang Qingyue. Femtosecond Laser Applications in Advanced Technologies [M]. Beijing: National Defense Industry Press, 2015. (in Chinese)

    [18] Kubota T, Nara M, Yoshino T. Interferometer for measuring displacement and distance [J]. Optics Letters, 1987, 12(5): 310-312.

    [19] Dickey J O, Bender P L, Faller J E, et al. Lunar laser ranging: a continuing legacy of the Apollo program [J]. Science, 1994, 265: 482-490.

    [20] Pritchard M E, Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes [J]. Nature, 2002, 418(6894): 167-171.

    [21] Yeomans D K, Antreasian P G, Barriot J P, et al. Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros [J]. Science, 2000, 289(5487): 2085-2088.

    [22] Wu X, Wei H, Zhang H, et al. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb [J]. Applied Optics, 2013, 52(10): 2042-2048.

    [23] Wu H, Zhang F, Meng F, et al. Absolute distance measurement using frequency comb and a single-frequency laser [J]. IEEE Photon Technology Letter, 2015, 27: 2587-2590.

    [24] Baumann E, Giorgetta F R, Coddington I, et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements [J]. Optics Letters, 2013, 38(12): 2026-2028.

    [25] Wu Tengfei, Liang Zhiguo, Yan Jiahua, et al. The progress on distance measuring technique with a femtosecond optical frequency comb [J]. Metrology & Measurement Technology, 2011, 31(5): 41-44. (in Chinese)

    [26] Hua Qing, Zhou Weihu, Xu Yan. Review of absolute distance measurement with femtosecond optical frequency comb [J]. Metrology & Measurement Technology, 2012, 32(1): 1-14. (in Chinese)

    [27] Wang Guochao, Yan Shuhua, Lin Cunbao, et al. Overview of large scale precision ranging by femtosecond optical frequency comb [J]. Optical Technique, 2012, 38(6): 670-677. (in Chinese)

    [28] Wu Xuejian, Li Yan, Wei Haoyun, et al. Femtosecond optical frequency combs for precision measurement applications [J]. Laser & Optoelectronics Progress, 2012, 49: 030001. (in Chinese)

    [29] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena [J]. Nature, 2009, 458(7242):1145-1149.

    [30] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements [J]. Nature Photonics, 2013, 7(2): 102-112.

    [31] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science, 2000, 288(5466): 635-639.

    [32] Udem T, Holzwarth R, Hansch T W. Optical frequency metrology [J]. Nature, 2002, 416(6877): 233-237.

    [33] Hansch T W. Nobel lecture: Passion for precision [J]. Reviews of Modern Physics, 2006, 78(4): 1297-1309.

    [34] Hall J L. Nobel Lecture: Defining and measuring optical frequencies [J]. Reviews of Modern Physics, 2006, 78(4): 1279-1295.

    [35] Diddams S A. The evolving optical frequency comb [Invited] [J]. JOSA B, 2010, 27(11): B51-B62.

    [36] Newbury N R. Searching for applications with a fine-tooth comb [J]. Nature Photonics, 2011, 5(4): 186-188.

    [37] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging [J]. Nature Communications, 2012, 745: 1-8.

    [38] Fermann M, Hartl I. Ultrafast fiber laser technology [Invited] [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 191-206.

    [39] Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status and applications [J]. Advances in Optics and Photonics, Review, 2016, 8(3): 465-540.

    [40] Han Hainian, Zhang Wei, Wang Peng, et al. Precise control of femtosecond Ti: sapphire laser frequency comb[J]. Acta Physica Sinica, 2007, 56(5): 2760-2764. (in Chinese)

    [41] Yan M, Li W, Yang K, et al. Harmonic mode locking with reduced carrier-envelope phase noise in ytterbium-doped fiber laser [J]. Optics Letters, 2012, 37(15): 3021-3023.

    [42] Guo Z, Hao Q, Yang S, et al. Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system [J]. IEEE Photonics Journal, 2017, 9(1): 1600507.

    [43] Hao Q, Zhang Q, Chen F, et al. All-optical 20-μHz-level repetition rate stabilization of mode locking with a nonlinear amplifying loop mirror [J]. Journal of Lightwave Technology, 2016, 34(11): 2833-2837.

    [44] Luo Jiang, Yang Song, Hao Qiang, et al. Precise locking the repetition rate of a SESAM mode-locking all polarization maintaining fiber laser [J]. Acta Optica Sinica, 2017, 37(2): 0206003. (in Chinese)

    [45] Hao Q, Zhang Q, Sun T, et al. Divided-pulse nonlinear amplification and simultaneous compression [J]. Applied Physics Letters, 2015, 106: 101103.

    [46] Lee J, Lee K, Jang Y, et al. Testing of a femtosecond pulse laser in outer space[J]. Scientific Reports, 2014: 05134.

    [47] Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses [J]. Nature Photonics, 2010, 4(10): 716-720.

    [48] Lee J, Kim Y J, Kim S W. Time-of-flight measurement using femtosecond pulses [C]//CLEO: Applications and Technology, 2011: JThB120.

    [49] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser [J]. Applied Optics, 2000, 39(30): 5512-5517.

    [50] Jin J, Kim Y J, Kim Y, et al. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser [J]. Optics Express, 2006, 14(13): 5968-5974.

    [51] Jin J, Kim Y J, Kim Y, et al. Absolute distance measurements using the optical comb of a femtosecond pulse laser [J]. Int J Precis Eng Manuf, 2007, 8(4): 22-26.

    [52] Bitou Y. Displacement metrology directly linked to a time standard using an optical-frequency-comb generator [J]. Optics Letters, 2009, 34(10): 1540-1542.

    [53] Hyun S, Kim Y J, Kim Y, et al. Absolute distance measurement using the frequency comb of a femtosecond laser [J]. CIRP Annals - Manufacturing Technology, 2010, 59(1): 555-558.

    [54] Salvadé Y, Schuhler N, Lévêque S, et al. High-accuracy absolute distance measurement using frequency comb referenced multi-wavelength source [J]. Applied Optics, 2008, 47(14): 2715-2720.

    [55] Doloca N R, Meiners-Hagen K, Wedde M, et al. Absolute distance measurement system using a femtosecond laser as a modulator [J]. Measurement Science and Technology, 2010, 21(11): 115302.

    [56] Wang Guochao, Wei Chunhua, Yan Shuhua. Wavelength selection and non-ambiguity range analysis for optical-comb-referenced multi-wavelength absolute distance measurement [J]. Acta Optica Sinica, 2014, 34(4): 121-127. (in Chinese)

    [57] Wang G, Jang Y S, Hyun S, et al. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser [J]. Optics Express, 2015, 23(7): 9121-9129.

    [58] Oh H, Park H E, Lee K, et al. Improved GPS-based satellite relative navigation using femtosecond laser relative distance measurements [J]. Journal of Astronomy and Space Sciences, 2016, 33(1): 45-54.

    [59] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range [J]. Nature Photonics, 2009, 3(6): 351-356.

    [60] Bernhardt B, Ozawa A, Jacquet P, et al. Cavity-enhanced dual-comb spectroscopy [J]. Nature Photonics, 2010, 4(1): 55-57.

    [61] Coddington I, Swann W C, Newbury N R. Coherent dual-comb spectroscopy at high signal-to-noise ratio [J]. Physical Review A, 2010, 82(4): 04381.

    [62] Newbury N R, Coddington I, Swann W. Sensitivity of coherent dual-comb spectroscopy [J]. Optics Express, 2010, 18(8): 7929-7945.

    [63] Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers [J]. Optics Express, 2011, 19(19): 18501-18509.

    [64] Lee J, Han S, Lee K, et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength [J]. Measurement Science and Technology, 2013, 24(4): 045201.

    [65] Zhang H, Wei H, Wu X, et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling [J]. Optics Express, 2014, 22(6): 6597-6604.

    [66] Zhang H, Wei H, Wu X, et al. Reliable non-ambiguity range extension with dual-comb simultaneous operation in absolute distance measurements [J]. Measurement Science and Technology, 2014, 25(12): 125201.

    [67] Zhang H, Wu X, Wei H, et al. Time-of-flight absolute distance measurement by dual-comb second harmonic generation [C]//Frontiers in Optics, 2014: FTh3G.4.

    [68] Zhang H, Wu X, Wei H, et al. Compact dual-comb absolute distance ranging with an electric reference [J]. IEEE Photonics Journal, 2015, 7(3): 1-8.

    [69] Han S, Kim Y J, Kim S W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses [J]. Optics Express, 2015, 23(20): 25874-25882.

    [70] Liang Fei, Song Youjian, Shi Haosen, et al. Measurement precision analysis for the rapid ranging system based on dual femtosecond lasers [J]. Journal of Optoelectronics·Laser, 2015, 26(8): 1553-1560. (in Chinese)

    [71] Shi H, Song Y, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers [J]. Optics Express, 2015, 23(11): 14057-14069.

    [72] Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser [J]. Optics Express, 2006, 14(13): 5954-5960.

    [73] Weng Jidong. Ultrafast pulse laser interference technique and its application in the diagnosis of shock dynamic process [D]. Mianyang: China Academy of Engineering Physics, 2010. (in Chinese)

    [74] Cui M, Zeitouny M G, Bhattacharya N, et al. Long distance measurement with femtosecond pulses using a dispersive interferometer [J]. Optics Express, 2011, 19(7): 6549-6562.

    [75] Xu Y, Zhou W H, Liu D M, et al. Absolute distance measurement based on the optical frequency comb of a femtosecond laser [J]. Opto-Electron Eng, 2011, 38(8): 79-83.

    [76] Xu Y, Zhou W, Liu D, et al. Absolute distance measurement by spectrally resolved interferometry based on a femtosecond pulse laser [J]. Optical Engineering, 2012, 51(8): 081509.

    [77] Zeitouny M G, Cui M, Janssen A, et al. Time-frequency distribution of interferograms from a frequency comb in dispersive media [J]. Optics Express, 2011, 19(4): 3406-3417.

    [78] Van den Berg S A, Persijn S T, Kok G J P, et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement [J]. Physical Review Letters, 2012, 108(18): 183901.

    [79] Wu H, Zhang F, Meng F, et al. Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser [J]. Measurement Science and Technology, 2015, 27(1): 015202.

    [80] Park J, Jin J, Kim J A, et al. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser [J]. Applied Physics Letters, 2016, 109(24): 244103.

    [81] Xia H, Yao J. Characterization of subpicosecond pulses based on temporal interferometry with real-time tracking of higher order dispersion and optical time delay [J]. Journal of Lightwave Technology, 2009, 27(22): 5029-5037.

    [82] Xia H, Zhang C. Ultrafast ranging lidar based on real-time Fourier transformation [J]. Optics Letters, 2009, 34(14): 2108-2110.

    [83] Xia Haiyun. Ultrafast femtosecond ranging lidar based on real-time dispersive Fourier transformation [D]. Beijing: Beihang University, 2011.

    [84] Xia H, Zhang C. Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry [J]. Optics Express, 2010, 18(5): 4118-4129.

    [85] La Lone B M, Marshall B R, Miller E K, et al. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments [J]. Review of Scientific Instruments, 2015, 86(2): 023112.

    [86] Bennett C V, La Lone B M, Younk P W, et al. Broadband laser ranging development at the DOE labs [Invited] [C]//SPIE, 2017, 10089: 100890F.

    [87] Kostinski N, Rhodes M A, Catenacci J, et al. Broadband laser ranging: signal analysis and interpretation [Invited] [C]//SPIE, 2017, 10089: 100890G.

    [88] Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe [J]. Optics Letters, 2004, 29(10): 1153-1155.

    [89] Cui M, Schouten R N, Bhattacharya N, et al. Experimental demonstration of distance measurement with a femtosecond frequency comb laser [J]. Journal of the European Optical Society-Rapid Publications, 2008(3): 08003.

    [90] Cui M, Zeitouny M G, Bhattacharya N, et al. High-accuracy long-distance measurements in air with a frequency comb laser [J]. Optics Letters, 2009, 34(13): 1982-1984.

    [91] Ciddor P E. Refractive index of air: new equations for the visible and near infrared [J]. Applied Optics, 1996, 35(9): 1566-1573.

    [92] Bonsch G, Potulski E. Measurement of the refractive index of air and comparison with modified Edlén′s formulae [J]. Metrologia, 1998, 35(2): 133-139.

    [93] Earnshaw K, Owens J. A dual wavelength optical distance measuring instrument which measures air density [J]. IEEE Journal of Quantum Electronics, 1967, 3(6): 257-258.

    [95] Joo K N, Kim Y, Kim S W. Distance measurements by combined method based on a femtosecond pulse laser [J]. Optics Express, 2008, 16(24): 19799-19806.

    [96] Wei D, Matsumoto H. Measurement accuracy of the pulse repetition interval-based excess fraction (PRIEF) method: an analogy-based theoretical analysis [J]. Journal of the European Optical Society-Rapid Publications, 2012(7): 12050.

    [97] Wei D, Takamasu K, Matsumoto H. Synthetic adjacent pulse repetition interval length method to solve integer ambiguity problem: theoretical analysis [J]. Journal of the European Optical Society-Rapid Publications, 2013(8): 13016.

    [98] Wei D, Aketagawa M. Comparison of length measurements provided by a femtosecond optical frequency comb [J]. Optics Express, 2014, 22(6): 7040-7045.

    [99] Wei D, Takahashi S, Takamasu K, et al. Time-of-flight method using multiple pulse train interference as a time recorder [J]. Optics Express, 2011, 19(6): 4881-4889.

    [100] Wang X, Takahashi S, Takamasu K, et al. Space position measurement using long-path heterodyne interferometer with optical frequency comb [J]. Optics Express, 2012, 20(3): 2725-2732.

    [101] Xing Shujian, Zhang Fumin, Cao Shiying, et al. Arbitrary and absolute length measurement based on femtosecond optical frequency comb [J]. Acta Phys Sin, 2013, 62(17): 170603. (in Chinese)

    [102] Wu H, Zhang F, Cao S, et al. Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser [J]. Optics Express, 2014, 22(9): 10380-10397.

    [103] Nakajima Y, Minoshima K. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement [J]. Optics Express, 2015, 23(20): 25979-25987.

    [104] Liu Tingyang, Zhang Fumin, Wu Hanzhong, et al. Absolute distance ranging by means of chirped pulse interferometry [J]. Acta Phys Sin, 2016, 65(2): 53-61. (in Chinese)

    [105] Matsumoto H, Zhu Y, Iwasaki S, et al. Measurement of the change in air refractive index and distance by means of a two-color interferometer [J]. Applied Optics, 1992, 31(22): 4522-4526.

    [106] Yamaoka Y, Minoshima K, Matsumoto H. Direct measurement of the group refractive index of air with interferometry between adjacent femtosecond pulses [J]. Applied Optics, 2002, 41(21): 4318-4324.

    [107] Minoshima K, Arai K, Inaba H. High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs [J]. Optics Express, 2011, 19(27): 26095-26105.

    [108] Wu G, Arai K, Takahashi M, et al. High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs [J]. Measurement Science and Technology, 2013, 24(1): 015203.

    [109] Kang H J, Chun B J, Jang Y S, et al. Real-time compensation of the refractive index of air in distance measurement[J]. Optics Express, 2015, 23(20): 26377-26385.

    [110] Wu H, Zhang F, Liu T, et al. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry [J]. Optics Express, 2016, 24(21): 24361-24376.

    [111] Lee S H, Lee J, Kim Y J, et al. Active compensation of large dispersion of femtosecond pulses for precision laser ranging [J]. Optics Express, 2011, 19(5): 4002-4008.

    [112] Wu Tengfei, Liang Zhiguo, Yan Jiahua. Theoretical study on air dispersion compensation in the distance measurement of femtosecond pulsed laser [J]. Chinese Journal of Lasers, 2012, 39(12): 168-173. (in Chinese)

    [113] Wu T, Liang Z, Ye P. Dispersion compensation for absolute distance measurement based on the femtosecond optical frequency comb [C]//International Symposium on Precision Engineering Measurement and Instrumentation, SPIE, 2013, 87590: 87590F.

    [114] Yang F, Zhang J, Zhan Y. Femtosecond laser range finders based on traditional cross correlation method and frequency resolved dispersion compensation method[J]. Optics Communications, 2014, 316: 179-189.

    Zhao Lijie, Zhou Yanzong, Xia Haiyun, Wu Tengfei, Han Jibo. Overview of distance measurement with femtosecond optical frequency comb[J]. Infrared and Laser Engineering, 2018, 47(10): 1006008
    Download Citation