• Photonics Research
  • Vol. 8, Issue 6, 929 (2020)
Xueli Chen1、2、†,*, Xinyu Wang1、2、†, Lin Wang3、†, Peng Lin4, Yonghua Zhan1、2, and Ji-Xin Cheng4
Author Affiliations
  • 1Engineering Research Center of Molecular & Neuro Imaging, Ministry of Education, Xi’an 710126, China
  • 2School of Life Science and Technology, Xidian University, Xi’an 710126, China
  • 3School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
  • 4Department of Electrical and Computer Engineering & Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
  • show less
    DOI: 10.1364/PRJ.384604 Cite this Article Set citation alerts
    Xueli Chen, Xinyu Wang, Lin Wang, Peng Lin, Yonghua Zhan, Ji-Xin Cheng. Stimulated Raman scattering signal generation in a scattering medium using self-reconstructing Bessel beams[J]. Photonics Research, 2020, 8(6): 929 Copy Citation Text show less
    References

    [1] C. L. Evans, X. S. Xie. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem., 1, 883-909(2008).

    [2] C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, M. T. Cicerone. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics, 8, 627-634(2014).

    [3] C. Zhang, D. Zhang, J. X. Cheng. Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng., 17, 415-445(2015).

    [4] J. X. Cheng, X. S. Xie. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [5] C. S. Liao, P. Wang, C. Y. Huang, P. Lin, G. Eakins, R. T. Bentley, R. Liang, J. X. Cheng. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope. ACS Photon., 5, 947-954(2018).

    [6] C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [7] D. Zhang, P. Wang, M. N. Slipchenko, J. X. Cheng. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy. Acc. Chem. Res., 47, 2282-2290(2014).

    [8] Y. Wakisaka, Y. Suzuki, O. Iwata, A. Nakashima, T. Ito, M. Hirose, R. Domon, M. Sugawara, N. Tsumura, H. Watarai, T. Shimobaba, K. Suzuki, K. Goda, Y. Ozeki. Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat. Microbiol., 1, 16124(2016).

    [9] C. H. Camp, M. T. Cicerone. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photonics, 9, 295-305(2015).

    [10] S. Heuke, F. B. Legesse, D. Akimov, U. Hubner, J. Dellith, M. Schmitt, J. Popp. Bessel beam coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. A, 32, 1773-1779(2015).

    [11] S. Heuke, J. Zheng, D. Akimov, R. Heintzmann, M. Schmitt, J. Popp. Bessel beam CARS of axially structured samples. Sci. Rep., 5, 10991(2015).

    [12] M. Wei, L. Shi, Y. Shen, Z. Zhao, A. Guzman, L. J. Kaufman, L. Wei, W. Min. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA, 116, 6608-6617(2019).

    [13] X. Xu, H. Liu, L. V. Wang. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics, 5, 154-157(2011).

    [14] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, C. Yang. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat. Commun., 3, 928(2012).

    [15] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun., 6, 5904(2015).

    [16] P. Lai, L. Wang, J. W. Tay, L. V. Wang. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126-132(2015).

    [17] F. Wang, H. Wan, Z. Ma, Y. Zhong, Q. Sun, Y. Tian, L. Qu, H. Du, M. Zhang, L. Li, H. Ma, J. Luo, Y. Liang, W. Li, G. Hong, L. Liu, H. Dai. Light-sheet microscopy in the near-infrared II window. Nat. Methods, 16, 545-552(2019).

    [18] J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, L. V. Wang. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods, 12, 407-410(2015).

    [19] G. Theriault, M. Cottet, A. Castonguay, N. McCarthy, Y. D. Koninck. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging. Front. Cell. Neurosci., 8, 139(2014).

    [20] T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods, 8, 417-423(2011).

    [21] L. Gao, L. Shao, B. C. Chen, E. Betzig. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat. Protoc., 9, 1083-1101(2014).

    [22] J. Shi, L. Wang, C. Noordam, L. V. Wang. Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of filed. J. Biomed. Opt., 20, 116002(2015).

    [23] K. S. Lee, J. P. Rolland. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Opt. Lett., 33, 1696-1698(2008).

    [24] X. Chen, C. Zhang, P. Lin, K. C. Huang, J. Liang, J. Tian, J. X. Cheng. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nat. Commun., 8, 15117(2017).

    [25] F. O. Fahrbach, P. Simon, A. Rohrbach. Microscopy with self-reconstructing beams. Nat. Photonics, 4, 780-785(2010).

    [26] F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, A. Rohrbach. Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation. Opt. Express, 21, 13824-13839(2013).

    [27] Y. Chen, A. Glaser, J. T. C. Liu. Bessel-beam illumination in dual-axis confocal microscopy mitigates resolution degradation caused by refractive heterogeneities. J. Biophoton., 10, 68-74(2017).

    [28] A. K. Glaser, Y. Chen, J. T. C. Liu. Fractal propagation method enables realistic optical microscopy simulations in biological tissues. Optica, 3, 861-869(2016).

    [29] M. Duocastella, C. B. Arnold. Bessel and annular beams for materials processing. Laser Photon. Rev., 6, 607-621(2012).

    [30] S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, J. Tian. Molecular optical simulation environment (MOSE): a platform for the simulation of light propagation in turbid media. PLoS ONE, 8, e61304(2013).

    [31] A. D. Klose. The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review. J. Quant. Spectrosco. Radiat. Transfer, 111, 1852-1853(2010).

    [32] L. Han, Y. Han, J. Wang, Z. Cui. Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam. J. Opt. Soc. Am. A, 31, 1946-1955(2014).

    [33] I. L. Katsev, A. S. Prikhack, N. S. Kazak, M. Kroening. Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media. Quantum Electron., 36, 357-362(2006).

    [34] A. Boniface, M. Mounaix, B. Blochet, R. Piestun, S. Gigan. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica, 4, 54-59(2017).

    [35] J. Zheng, B. Yao, Y. Yang, M. Lei, P. Gao, R. Li, S. Yan, D. Dan, T. Ye. Investigation of Bessel beam propagation in scattering media with scalar diffraction method. Chin. Opt. Lett., 11, 112601(2013).

    [36] F. O. Fahrbach, A. Rohrbach. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun., 3, 632(2012).

    [37] J. Chen, X. Yuan, J. Li, P. Dong, I. Hamza, J. X. Cheng. Label-free imaging of Heme dynamics in living organisms by transient absorption microscopy. Anal. Chem., 90, 3395-3401(2018).

    [38] F. E. Robles, S. Deb, J. W. Wilson, C. S. Gainey, M. A. Selim, P. J. Mosca, D. S. Tyler, M. C. Fischer, W. S. Warren. Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential. Biomed. Opt. Express, 6, 3631-3645(2015).

    [39] X. Chen, S. Zhu, H. Wang, C. Bao, D. Yang, C. Zhang, P. Lin, J. X. Cheng, Y. Zhan, J. Liang, J. Tian. Accelerated stimulated Raman projection tomography by sparse reconstruction from sparse-view data. IEEE Trans. Biomed. Eng., 67, 1293-1302(2020).

    [40] X. Dong, S. Vekhande, G. Gao. Sinogram interpolation for sparse-view micro-CT with deep learning neural network. Proc. SPIE, 10948, 109482O(2019).

    Xueli Chen, Xinyu Wang, Lin Wang, Peng Lin, Yonghua Zhan, Ji-Xin Cheng. Stimulated Raman scattering signal generation in a scattering medium using self-reconstructing Bessel beams[J]. Photonics Research, 2020, 8(6): 929
    Download Citation