• Photonics Research
  • Vol. 5, Issue 3, 245 (2017)
Jing Cao1, Pinghe Wang1, Yan Zhang2, Guohua Shi1、3、*, Bo Wu4, Shangjian Zhang1, and Yong Liu1
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2School of Electronic and Communication Engineering, Guiyang University, Guiyang 550005, China
  • 3Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
  • 4College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
  • show less
    DOI: 10.1364/PRJ.5.000245 Cite this Article Set citation alerts
    Jing Cao, Pinghe Wang, Yan Zhang, Guohua Shi, Bo Wu, Shangjian Zhang, Yong Liu. Methods to improve the performance of the swept source at 1.0  μm based on a polygon scanner[J]. Photonics Research, 2017, 5(3): 245 Copy Citation Text show less
    References

    [1] S. R. Chinn, E. Swanson, J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source. Opt. Lett., 22, 340-342(1997).

    [2] S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, B. E. Bouma. Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Photon. Technol. Lett., 16, 293-295(2004).

    [3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma. High-speed optical frequency-domain imaging. Opt. Express, 11, 2953-2963(2003).

    [4] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express, 13, 3513-3528(2005).

    [5] K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, C. H. Chong. MEMS scanner based swept source laser for optical coherence tomography. Proc. SPIE, 7554, 75542Q(2010).

    [6] V. Jayaramana, D. D. Johna, C. Burgnera, M. E. Robertsona, B. Potsaidb, J. Y. Jiangb, T. H. Tsaic, W. Choic, C. D. Luc, P. J. S. Heimb, J. G. Fujimotoc, A. E. Cableb. Recent advances in MEMS-VCSELs for high performance structural and functional SS-OCT imaging. Proc. SPIE, 8934, 893402(2014).

    [7] D. John, C. Burgner, B. Potsaid, M. Robertson, B. Lee, W. Choi, A. Cable, J. Fujimoto, V. Jayaraman. Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging. J. Lightwave Technol., 33, 3461-3468(2015).

    [8] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express, 14, 3225-3237(2006).

    [9] V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, A. E. Cable. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. Opt. Lett., 32, 361-363(2007).

    [10] T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, R. Huber. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain modelocked laser. Opt. Express, 19, 3044-3062(2011).

    [11] B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, J. G. Fujimoto. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express, 18, 20029-20048(2010).

    [12] S. Marschall, T. klein, W. Thomas. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060  nm. Proc. SPIE, 8213, 82130R(2012).

    [13] Y. Kwon, M. Ko, M. Jung, I. Park, N. Kim, S. Han, H. Ryu, K. Park, M. Jeon. Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter. Sensors, 13, 9669-9678(2013).

    [14] Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, R. Windeler. Optimal wavelength for ultrahigh resolution optical coherence tomography. Opt. Express, 11, 1411-1417(2003).

    [15] E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, S. H. Yun. In vivo optical frequency domain imaging of human retina and choroid. Opt. Express, 14, 4403-4411(2006).

    [16] A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler. In vivo retinal optical coherence tomography at 1040 nm—enhanced penetration into the choroid. Opt. Express, 13, 3252-3258(2005).

    [17] R. Huber, D. C. Adler, J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett., 31, 2975-2977(2006).

    [18] S. H. Yun, C. Boudoux, G. J. Tearney, B. E. Bouma. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett., 28, 1981-1983(2003).

    [19] C. Chong, T. Suzuki, A. Morosawa, T. Sakai. Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength swept light source. Opt. Express, 16, 21105-21118(2008).

    [20] M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. A. Vitkin, V. X. D. Yang. High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. Opt. Lett., 34, 2814-2816(2009).

    [21] C. Chong, A. Morosawa, T. Sakai. High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography. IEEE J. Sel. Top. Quantum Electron., 14, 235-242(2008).

    [22] S. M. R. Motaghian Nezam. High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography. Opt. Lett., 33, 1741-1743(2008).

    [23] C. Chong, A. Morosawa, T. Sakai. High speed wavelength-swept laser source with simple configuration for optical coherence tomography. Proc. SPIE, 6627, 662705(2007).

    [24] T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, P. Xue. Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography. Opt. Lett., 39, 247-250(2014).

    [25] W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma. Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 17, 678-680(2005).

    [26] Z. Jun, L. Gangjun, C. Zhongping. Ultra broad band Fourier domain mode locked swept source based on dual SOAs and WDM couplers. Proc. SPIE, 7554, 75541I(2010).

    [27] S.-W. Lee, H.-W. Song, M.-Y. Jung, S.-H. Kim. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography. Opt. Express, 19, 21227-21237(2011).

    [28] X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, K. K. Y. Wong. 28 MHz swept source at 1.0  μm for ultrafast quantitative phase imaging. Biomed. Opt. Express, 6, 3855-3864(2015).

    [29] T. Huo, C. Wang, X. Zhang, T. Chen, W. Liao, W. Zhang, S. Ai, J.-C. Hsieh, P. Xue. Ultrahigh-speed optical coherence tomography utilizing all-optical 40  MHz swept-source. J. Biomed. Opt., 20, 030503(2015).

    [30] W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, B. E. Bouma. >400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. Opt. Lett., 35, 2919-2921(2010).

    [31] S. Marschall, T. Klein, W. Wieser, B. Biedermann, K. Hsu, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, P. E. Andersen. High-power FDML laser for swept source-OCT at 1060  nm. Proc. SPIE, 7715, 77150B(2010).

    CLP Journals

    [1] Seongjin Bak, Gyeong Hun Kim, Hansol Jang, Chang-Seok Kim. Optical Vernier sampling using a dual-comb-swept laser to solve distance aliasing[J]. Photonics Research, 2021, 9(5): 657

    Jing Cao, Pinghe Wang, Yan Zhang, Guohua Shi, Bo Wu, Shangjian Zhang, Yong Liu. Methods to improve the performance of the swept source at 1.0  μm based on a polygon scanner[J]. Photonics Research, 2017, 5(3): 245
    Download Citation