• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111414 (2020)
Yongjiu Yuan and Xin Li*
Author Affiliations
  • School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/LOP57.111414 Cite this Article Set citation alerts
    Yongjiu Yuan, Xin Li. Femtosecond Laser Processing of Graphene and Its Application[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111414 Copy Citation Text show less
    References

    [1] Zhu Y W, Murali S, Cai W W et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 22, 3906-3924(2010).

    [2] Min H, Bistritzer R, Su J J et al. Room-temperature superfluidity in graphene bilayers[J]. Physical Review B, 78, 121401(2008).

    [3] Lee C, Wei X, Kysar J W et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008).

    [4] Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008).

    [5] Morozov S V, Novoselov K S, Katsnelson M I et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008).

    [6] Luo B, Wang B, Li X L et al. Graphene-confined Sn nanosheets with enhanced lithium storage capability[J]. Advanced Materials, 24, 3538-3543(2012).

    [7] Avouris P. Graphene: electronic and photonic properties and devices[J]. Nano Letters, 10, 4285-4294(2010).

    [8] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [9] Wallace P R. The band theory of graphite[J]. Physical Review, 71, 622(1947).

    [10] Ren W C, Cheng H M. The global growth ofgraphene[J]. Nature Nanotechnology, 9, 726-730(2014).

    [11] Shi X S. Novel methods for femtosecond laser micromaching of controllable micro-/nano- structures and applications based on electrons dynamics control[D]. Beijing: Beijing Institute of Technology, 1(2016).

    [12] Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics[J]. Advanced Materials, 22, 2392-2415(2010).

    [13] Liu Z Y, Cao H Q, Xu F et al. Graphene nanoelectromechanical system and its integration with optical fiber[J]. Laser & Optoelectronics Progress, 56, 110006(2019).

    [14] Chang H X, Wang G F, Yang A et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode[J]. Advanced Functional Materials, 20, 2893-2902(2010).

    [15] Tan T, Yuan Z Y, Chen Y F et al. Graphene-based fiber functional sensors and laser devices[J]. Laser & Optoelectronics Progress, 56, 170613(2019).

    [16] Bai H, Li C, Shi G Q. Functional composite materials based on chemically converted graphene[J]. Advanced Materials, 23, 1089-1115(2011).

    [17] Zhang N, Zhang YH, Xu Y J. Recent progress on graphene-based photocatalysts: current status and future perspectives[J]. Nanoscale, 4, 5792-5813(2012).

    [18] Ke W M, Li Z H, Zhou Z X et al. Reduced graphene oxide-based interferometric fiber-optic humidity sensor[J]. Acta Optica Sinica, 39, 1206007(2019).

    [19] Yu X W, Cheng H H, Zhang M et al. Graphene-based smart materials[J]. Nature Reviews Materials, 2, 17046(2017).

    [20] Han B, Zhang Y L, Zhu L et al. Plasmonic-assisted graphene oxide artificial muscles[J]. Advanced Materials, 1806386(2018).

    [21] Hu Y, Wu G, Lan T et al. Agraphene-based bimorph structure for design of high performance photoactuators[J]. Advanced Materials, 27, 7867-7873(2015).

    [22] Wu D Q, Zhang F, Liang H W et al. Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets[J]. Chemical Society Reviews, 41, 6160-6177(2012).

    [23] Ji L W, Lin Z, Alcoutlabi M et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 4, 2682-2699(2011).

    [24] Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials[J]. Energy & Environmental Science, 4, 1113-1132(2011).

    [25] Zhang Q F, Uchaker E, Candelaria S L et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews, 42, 3127-3171(2013).

    [26] Yoo J H, Bin In J, Bok Park J et al. Graphene folds by femtosecond laser ablation[J]. Applied Physics Letters, 100, 233124(2012).

    [27] Park J B, Xiong W, Gao Y et al. Fast growth of graphene patterns by laser direct writing[J]. Applied Physics Letters, 98, 123109(2011).

    [28] Xiong W, Zhou Y S, Hou W J et al. Direct writing of graphene patterns on insulating substrates under ambient conditions[J]. Scientific Reports, 4, 4892(2015).

    [29] Roberts A, Cormode D, Reynolds C et al. Response of graphene to femtosecond high-intensity laser irradiation[J]. Applied Physics Letters, 99, 051912(2011).

    [30] Currie M, Caldwell J D, Bezares F J et al. Quantifying pulsed laser induced damage to graphene[J]. Applied Physics Letters, 99, 211909(2011).

    [31] Kang S, Evans C C, Shukla S et al. Patterning and reduction of graphene oxide using femtosecond-laser irradiation[J]. Optics & Laser Technology, 103, 340-345(2018).

    [32] Kasischke M, Maragkaki S, Volz S et al. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses[J]. Applied Surface Science, 445, 197-203(2018).

    [33] Yan R Y, Jiang L, Li X et al. An abnormal non-incubation effect in femtosecond laser processing of freestanding reduced graphene oxide paper[J]. Journal of Physics D: Applied Physics, 50, 185302(2017).

    [34] Shi X S, Li X, Jiang L et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films[J]. Scientific Reports, 5, 17557(2015).

    [35] Dorin B, Parkinson P, Scully P. Direct laser write process for 3D conductive carbon circuits in polyimide[J]. Journal of Materials Chemistry C, 5, 4923-4930(2017).

    [36] Wang S T, Yu Y C, Ma D L et al. High performance hybrid supercapacitors on flexible polyimide sheets using femtosecond laser 3D writing[J]. Journal of Laser Applications, 29, 022203(2017).

    [37] Antanavi iūt I, Šimatonis L, Ul inas O et al. Femtosecond laser micro-machined polyimide films for cell scaffold applications[J]. Journal of Tissue Engineering and Regenerative Medicine, 12, e760-e773(2018).

    [38] Messina E, Compagnini G. D'Urso L, et al. Size distribution and particle shape in silver colloids prepared by laser ablation in water[J]. Radiation Effects and Defects in Solids, 165, 579-583(2010).

    [39] Compagnini G, Scalisi A A, Puglisi O et al. Synthesis of gold colloids by laser ablation in thiol-alkane solutions[J]. Journal of Materials Research, 19, 2795-2798(2004).

    [40] Li B, Jiang L, Li X et al. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water[J]. Scientific Reports, 7, 11182(2017).

    [41] Kan Z, Zhang Q, Ren H Z et al. Femtosecond laser induced formation of graphene nanostructures in water and their field emission properties[J]. Materials Research Express, 6, 085016(2019).

    [42] Yang B, Dong N N, Wang S B. Qualitative analysis of reduction degree in reduced graphene oxide solution by femtosecond laser-induced breakdown spectroscopy[J]. IOP Conference Series: Materials Science and Engineering, 382, 022020(2018).

    [43] Liu Q, Guo B D, Rao Z Y et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters, 13, 2436-2441(2013).

    [44] Russo P, Liang R, Jabari E et al. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions[J]. Nanoscale, 8, 8863-8877(2016).

    [45] Zhang Y L, Guo L, Wei S et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 5, 15-20(2010).

    [46] Bi Y G, Feng J, Li Y F et al. Arbitrary shape designable microscale organic light-emitting devices by using femtosecond laser reduced graphene oxide as a patterned electrode[J]. ACS Photonics, 1, 690-695(2014).

    [47] Tielrooij K J, Piatkowski L, Massicotte M et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating[J]. Nature Nanotechnology, 10, 437-443(2015).

    [48] Yoo J H, Park J B, Ahn S et al. Laser-induced direct graphene patterning and simultaneous transferring method for graphene sensor platform[J]. Small, 9, 4269-4275(2013).

    [49] Paula K T, Gaál G. Almeida G F B, et al. Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications[J]. Optics & Laser Technology, 101, 74-79(2018).

    [50] Li L, Feng Z Y, Qiao X G et al. Ultrahigh sensitive temperature sensor based on Fabry-Pérot interference assisted by a graphene diaphragm[J]. IEEE Sensors Journal, 15, 505-509(2015).

    [51] In J B, Hsia B, Yoo J H et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 83, 144-151(2015).

    [52] Wang S T, Yu Y C, Li R Z et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets[J]. Electrochimica Acta, 241, 153-161(2017).

    [53] Shen D Z, Zou G S, Liu L et al. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer[J]. ACS Applied Materials & Interfaces, 10, 5404-5412(2018).

    [54] Li R Z, Peng R, Kihm K D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper usingin situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 9, 1458-1467(2016).

    Yongjiu Yuan, Xin Li. Femtosecond Laser Processing of Graphene and Its Application[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111414
    Download Citation