• Laser & Optoelectronics Progress
  • Vol. 58, Issue 9, 0922001 (2021)
Jinlin Liu and feihong Yu*
Author Affiliations
  • College of Optical Science and Engineering, Zhejiang University, Hangzhou , Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP202158.0922001 Cite this Article Set citation alerts
    Jinlin Liu, feihong Yu. Descriptions of Rotationally Symmetric Aspheres and Analysis of Their Characteristics[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0922001 Copy Citation Text show less

    Abstract

    In optical design, to provide more design freedom for optical system design and optimization, a rotationally symmetric aspheric surface is often used. The standard expression for a rotationally symmetric aspheric surface is usually a combination of a base quadric surface and an additional polynomial, which can be an even-power-series polynomial, Zernike polynomial, or Q-type polynomial, among others. Hence, the expressions for the base quadric surface and aspheric surface based on different additional polynomials are derived, the aspheric coefficient and the slope of the aspheric surface of various rotationally symmetric aspheric surfaces are compared, and the application of an aspheric surface based on different additional polynomials in optical design is compared with design examples, and the characteristics of each aspheric surface are identified. The results show that, compared with other aspheric surfaces, the aspheric surface based on a Q-type polynomial can better control the surface shape of the aspheric surface, and the optimization efficiency is higher.
    zt=fxt2+yt2
    zt=fxt,yt=ctxt2at2+yt2bt21+1-xt2at2-yt2bt2
    at2/ct=Rt,x
    bt2/ct=Rt,y
    Kt,x=at2/ct2-1
    Kt,y=bt2/ct2-1
    zt=fxt,yt=xt2Rt,x+yt2Rt,y1+1-1+Kt,xxtRt,x2-1+Kt,yytRt,y2
    zt=fxt,yt=ht2Rt+Rt2-1+Ktht2
    ztht=fxt,yt=ht2ρt1+1-1+Ktht2ρt2
    ρe1+Keze2-2ze+ρehe2=0
    ρe1+Keze-m=2MAe,2mhe2m2-2ze-m=2MAe,2mhe2m+ρehe2=0
    zehe=he2ρe1+1-1+Kehe2ρt2+Ae,2mhe2m
    Be,2m=Ae,2mρe1-2m
    zehe=he2ρ1+1-1+Kehe2ρe2+(1)
    1ρem=2MBe,2mheρe2m
    heρe=heRe=sin φe
    zeheρe=1ρeheρe21+1-1+Keheρe2+m=2MBe,2mheρe2m
    Fr,θ=iAifir,θ
    fir,θfjr,θdrdr=δij
    Wr,θfir,θdrdθ=iδiiAi
    Wr,θfir,θdrdθ=Ai
    W2r,θ=Wr,θ*Wr,θdrdθ=iAi2
    Wr,θ=α,βCαβZαβr,θ
    Zαβr,θ±iZα-βr,θ=Vα-βrcos θ,rsin θ=Vαβrexp±imθ
    Zαβr,θ=Vαβrcosmθ
    Zα-βr,θ=Vαβrsinmθ
    Vαβr=l=0α-β/2-1lα-l!l!12α+β-l!12α-β-l!rα-2l
    V2β4r=l=0β-2-1l2β-l!l!β+2-l!β-2-l!r2β-2l
    V44r=r4V64r=-5r4+6r6V84r=15r4-42r6+28r8V104r=-35r4+168r6-252r8+120r10V124r=70r4-504r6+1260r8-1320r10+495r12V144r=-126r4+1260r6-4620r8+7920r10-6435r12+2002r14
    zZhZ=hZ2ρZ1+1-1+KZhZ2ρZ2+1ρZm=2MCZ,2mVZ,2β4r
    zZhZρZ=1ρZhZρZ21+1-1+KZhZρZ2+m=2MCZ,2mVZ,2β4r
    Δzcon(r)=r4m=0MamQcon,mr2
    zconhcon=ρhcon21+1-1+Kρcon2hcon2+(1)
    r4m=0MamQcon,mr2
    gconhcon=fhcon-ρconhcon21+1-1+Kconρcon2hcon2
    Econ2a0,a1,,aM=gconrhcon,max-r4m=0MamQcon,mr22
    m=0MGcon,mnam=bm
    Gcon,mn=r8Qcon,mr2Qcon,nr2=01Qcon,mx2Qcon,nr2x4dx
    Qcon,mx=Pcon,m0,42x-1
    Qcon,0r2=1Qcon,1r2=-5-6r2Qcon,2r2=15-14r23-2r2Qcon,3r2=-35-12r214-r221-10r2Qcon,4r2=70-3r2168-5r284-11r28-3r2Qcon,5r2=-126-r21260-11r2420-r2720-13r245-14r2
    r4Qcon,mr2=Vcon,2m4r2
    am=Ccon,2m/ρcon
    ρbfs=2fhmax,bfs/hmax,bfs2+fhmax,bfs2
    Δzbfs(r)=r21-r21-ρbfs2hbfs2m=0MamQbfs,mr2
    zbfshbfs=ρbfshbfs21+1-ρbfs2hbfs2+r21-r21-ρbfs2hbfs2(1)
    zm=0MamQbfs,mr2
    km=ddrr21-r2Qbfs,mr2
    kmuknu=δmn
    Qbfs,0r2=1Qbfs,1(r2)=11913-16r2Qbfs,2(r2)=29529-4r225-19r2Qbfs,3(r2)=22545207-4r2315-r2577-320r2Qbfs,4(r2)=131318317737-16r24653-2r27381-8r21168-509r2Qbfs,5(r2)=13663221366657-32r228338-r2135325-8r235884-r234661-12432r2
    KRMS=1hbfs,maxddrr21-r2m=0MamQbfs,mr2=(1)
    1hbfs,max2m=0Mam2
    B2m=A2mρ1-2m
    am=1ρC2m
    A4=1ρZhZ,max4C4-5C6+15C8-35C10+70C12-126C14A6=1ρZhZ,max66C6-42C8+168C10-504C12+1260C14A8=1ρZhZ,max828C8-252C10+1260C12-4620C14A10=1ρZhZ,max10120C10-1320C12+7920C14A12=1ρZhZ,max12495C12-6435C14A14=1ρZhZ,max142002C14
    C4=ρZA4hZ,max4+56A6hZ,max6+57A8hZmax8+58A10hZ,max10+59A12hZ,max12+12A14hZ,max14C6=ρZ16A6hZ,max6+14A8hZ,max8+724A10hZ,max10+1445A12hZ,max12+722A14hZ,max14C8=ρZ128A8hZ,max8+340A10hZ,max10+655A12hZ,max12+322A14hZ,max14C10=ρZ1120A10hZ,max10+145A12hZ,max12+126A14hZ,max14C12=ρZ1495A12hZ,max12+1154A14hZ,max14C14=ρZ12002A14hZ,max14
    Jinlin Liu, feihong Yu. Descriptions of Rotationally Symmetric Aspheres and Analysis of Their Characteristics[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0922001
    Download Citation