• Photonics Research
  • Vol. 10, Issue 10, 2293 (2022)
Kaige Liu1、2、†, Hengkang Zhang3、†, Shanshan Du1、2, Zeqi Liu1、2, Bin Zhang4、5、*, Xing Fu1、2、6、*, and Qiang Liu1、2、7、*
Author Affiliations
  • 1Key Laboratory of Photonics Control Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
  • 2Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
  • 3Beijing Institute of Control Engineering, Beijing 100190, China
  • 4Beijing Institute of Electronic System Engineering, Beijing 100854, China
  • 5e-mail:
  • 6e-mail:
  • 7e-mail:
  • show less
    DOI: 10.1364/PRJ.461172 Cite this Article Set citation alerts
    Kaige Liu, Hengkang Zhang, Shanshan Du, Zeqi Liu, Bin Zhang, Xing Fu, Qiang Liu. Particle manipulation behind a turbid medium based on the intensity transmission matrix[J]. Photonics Research, 2022, 10(10): 2293 Copy Citation Text show less
    References

    [1] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [2] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [3] J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, D. Mathur. Torque-generating malaria-infected red blood cells in an optical trap. Opt. Express, 12, 1179-1184(2004).

    [4] M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, T. Volz. Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds. Nat. Phys., 13, 241-245(2017).

    [5] P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, G. Koster. Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nat. Commun., 7, 10974(2016).

    [6] R. Zhu, T. Avsievich, A. Popov, I. Meglinski. Optical tweezers in studies of red blood cells. Cells, 9, 545(2020).

    [7] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, T. Li. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol., 15, 89-93(2020).

    [8] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [9] X. Han, X. Chen, W. Xiong, T. Kuang, Z. Chen, M. Peng, G. Xiao, K. Yang, H. Luo. Vacuum optical tweezers system and its research progress in precision measurement. Chin. J. Lasers, 48, 0401011(2021).

    [10] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol., 8, 807-819(2013).

    [11] D. Conteduca, G. Brunetti, G. Pitruzzello, F. Tragni, K. Dholakia, T. F. Krauss, C. Ciminelli. Exploring the limit of multiplexed near-field optical trapping. ACS Photon., 8, 2060-2066(2021).

    [12] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [13] K. Dholakia, P. Zemánek. Colloquium: gripped by light: optical binding. Rev. Mod. Phys., 82, 1767-1791(2010).

    [14] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 5, 335-342(2011).

    [15] M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics, 5, 349-356(2011).

    [16] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [17] G. Volpe, L. Kurz, A. Callegari, G. Volpe, S. Gigan. Speckle optical tweezers: micromanipulation with random light fields. Opt. Express, 22, 18159-18167(2014).

    [18] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 23, 12189-12206(2015).

    [19] S. Rotter, S. Gigan. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys., 89, 015005(2017).

    [20] I. M. Vellekoop, A. P. Mosk. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett., 101, 120601(2008).

    [21] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [22] D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk. Focusing light through random photonic media by binary amplitude modulation. Opt. Express, 19, 4017-4029(2011).

    [23] S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Controlling light through optical disordered media: transmission matrix approach. New J. Phys., 13, 123021(2011).

    [24] T. Čižmár, M. Mazilu, K. Dholakia. In situ wavefront correction and its application to micromanipulation. Nat. Photonics, 4, 388-394(2010).

    [25] T. Peng, R. Li, S. An, X. Yu, M. Zhou, C. Bai, Y. Liang, M. Lei, C. Zhang, B. Yao, P. Zhang. Real-time optical manipulation of particles through turbid media. Opt. Express, 27, 4858-4866(2019).

    [26] O. Katz, E. Small, Y. Silberberg. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics, 6, 549-553(2012).

    [27] B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, C. Yang. Translation correlations in anisotropically scattering media. Nat. Phys., 11, 684-689(2015).

    [28] H. Zhang, B. Zhang, Q. Feng, Y. Ding, Q. Liu. Self-reference method for measuring the transmission matrices of scattering media. Appl. Opt., 59, 7547-7552(2020).

    [29] H. Zhang, B. Zhang, Q. Liu. OAM-basis transmission matrix in optics: a novel approach to manipulate light propagation through scattering media. Opt. Express, 28, 15006-15015(2020).

    [30] P. Pai, J. Bosch, A. P. Mosk. Resampling the transmission matrix in an aberration-corrected Bessel mode basis. Opt. Express, 29, 24-36(2021).

    [31] D. Kim, W. Choi, M. Kim, J. Moon, K. Seo, S. Ju, W. Choi. Implementing transmission eigenchannels of disordered media by a binary-control digital micromirror device. Opt. Commun., 330, 35-39(2014).

    [32] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express, 20, 1733-1740(2012).

    [33] J. W. Tay, J. Liang, L. V. Wang. Amplitude-masked photoacoustic wavefront shaping and application in flowmetry. Opt. Lett., 39, 5499-5502(2014).

    [34] A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, L. Daudet. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express, 23, 11898-11911(2015).

    [35] M. N’Gom, M.-B. Lien, N. M. Estakhri, T. B. Norris, E. Michielssen, R. R. Nadakuditi. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method. Sci. Rep., 7, 2518(2017).

    [36] T. Zhao, S. Ourselin, T. Vercauteren, W. Xia. Seeing through multimode fibers with real-valued intensity transmission matrices. Opt. Express, 28, 20978-20991(2020).

    [37] J. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [38] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [39] J. Yang, J. Li, S. He, L. V. Wang. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation. Optica, 6, 250-256(2019).

    [40] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 61, 569-582(1992).

    Kaige Liu, Hengkang Zhang, Shanshan Du, Zeqi Liu, Bin Zhang, Xing Fu, Qiang Liu. Particle manipulation behind a turbid medium based on the intensity transmission matrix[J]. Photonics Research, 2022, 10(10): 2293
    Download Citation