• Chinese Optics Letters
  • Vol. 19, Issue 7, 071402 (2021)
Songqing Zha1、2, Yujin Chen1、*, Bingxuan Li1、3, Yanfu Lin1, Wenbin Liao1, Yuqi Zou4, Chenghui Huang1, Zhanglang Lin1, and Ge Zhang1、3、5、**
Author Affiliations
  • 1Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • 2Fuzhou University, Fuzhou 350002, China
  • 3Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
  • 4Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 5Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Device, Fuzhou 350108, China
  • show less
    DOI: 10.3788/COL202119.071402 Cite this Article Set citation alerts
    Songqing Zha, Yujin Chen, Bingxuan Li, Yanfu Lin, Wenbin Liao, Yuqi Zou, Chenghui Huang, Zhanglang Lin, Ge Zhang. High-repetition-rate 1.5 µm passively Q-switched Er:Yb:YAl3(BO3)4 microchip laser[J]. Chinese Optics Letters, 2021, 19(7): 071402 Copy Citation Text show less
    References

    [1] D. Wu, J. W. Guo, J. Du, C. X. Xia, L. H. Zeng, Y. Z. Tian, Z. F. Shi, Y. T. Tian, X. J. Li, Y. H. Tsang, J. S. Jie. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 13, 9907(2019).

    [2] L. H. Zeng, S. H. Lin, Z. H. Lou, H. Y. Yuan, H. Long, Y. Y. Li, W. Lu, S. P. Lau, D. Wu, Y. H. Tsang. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater., 10, 352(2018).

    [3] L. H. Zeng, D. Wu, S. H. Lin, C. Xie, H. Y. Yuan, W. Lu, S. P. Lau, Y. Chai, L. B. Luo, Z. J. Li, Y. H. Tsang. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 29, 1806878(2019).

    [4] M. J. Myers, J. D. Myers, J. T. Sarracino, C. R. Hardy, B. P. Guo, S. M. Christian, J. A. Myers, F. Roth, A. G. Myers. LIBS system with compact fiber spectrometer, head mounted spectra display and hand held eye-safe erbium glass laser gun. Proc. SPIE, 7578, 75782G(2010).

    [5] G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, S. Sverchkov. Development and characterization of Yb-Er laser glass for high average power laser diode pumping. Appl. Phys. B, 75, 41(2002).

    [6] P. Laporta, S. Taccheo, S. Longhi, O. Svelto, C. Svelto. Erbium-ytterbium microlasers: optical properties and lasing characteristics. Opt. Mater., 11, 269(1999).

    [7] Q. He, F. Wang, Z. Lin, C. Shao, M. Wang, S. Wang, C. Yu, L. Hu. Temperature dependence of spectral and laser properties of Er3+/Al3+ co-doped aluminosilicate fiber. Chin. Opt. Lett., 17, 101401(2019).

    [8] H. Liu, Y. Yu, D. Sun, H. Liu, Y. Wang, H. Zheng, D. Li, G. Jin. 1514 nm eye-safe passively Q switched self-optical parametric oscillator based on Nd3+ doped MgO:PPLN. Chin. Opt. Lett., 17, 111404(2019).

    [9] M. Liu, Y. Ouyang, H. Hou, W. Liu, Z. Wei. Q-switched fiber laser operating at 1.5 µm based on WTe2. Chin. Opt. Lett., 17, 020006(2019).

    [10] N. A. Tolstik, G. Huber, V. V. Maltsev, N. I. Leonyuk, N. V. Kuleshov. Excited state absorption, energy levels, and thermal conductivity of Er3+: YAB. Appl. Phys. B, 92, 567(2008).

    [11] R. Fluck, R. Haring, R. Paschotta, E. Gini, H. Melchior, U. Keller. Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors. Appl. Phys. Lett., 72, 3273(1998).

    [12] R. Haring, R. Paschotta, R. Fluck, E. Gini, H. Melchior, U. Keller. Passively Q-switched microchip laser at 1.5 µm. J. Opt. Soc. Am. B, 18, 1805(2001).

    [13] G. Karlsson, V. Pasiskevicius, F. Laurell, J. A. Tellefsen, B. Denker, B. I. Galagan, V. V. Osiko, S. Sverchkov. Diode-pumped Er-Yb: glass laser passively Q switched by use of Co2+: MgAl2O4 as a saturable absorber. Appl. Opt., 39, 6188(2000).

    [14] V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, V. I. Levchenko, E. Sorokin, I. Sorokina. Spectral kinetic properties and lasing characteristics of diode-pumped Cr2+:ZnSe single crystals. Opt. Spectrosc., 99, 663(2005).

    [15] N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, N. I. Leonyuk. Er,Yb:YAl3(BO3)4 efficient 1.5 µm laser crystal. Appl. Phys. B, 97, 357(2009).

    [16] N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, N. I. Leonyuk. Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser. Opt. Lett., 32, 3233(2007).

    [17] Y. J. Chen, Y. F. Lin, Y. Q. Zou, J. H. Huang, X. H. Gong, Z. D. Luo, Y. D. Huang. Diode-Pumped 1.5–1.6 µm laser operation in Er3+ doped YAl3(BO3)4 microchip. Opt. Express, 22, 13969(2014).

    [18] Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, Y. D. Huang. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl3(BO3)4/sapphire composite crystal around 1.55 µm. Opt. Express, 26, 419(2018).

    [19] V. E. Kisel, K. N. Gorbachenya, A. S. Yasukevich, A. M. Ivashko, N. V. Kuleshov, V. V. Maltsev, N. I. Leonyuk. Passively Q-switched microchip Er,Yb:YAl3(BO3)4 diode-pumped laser. Opt. Lett., 37, 2745(2012).

    [20] Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, Y. D. Huang. Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5–1.6 µm. Opt. Express, 23, 12401(2015).

    [21] C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, A. Tunnermann. BBO-sapphire sandwich structure for frequency conversion of high power lasers. Opt. Mater. Express, 4, 1092(2014).

    [22] Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, Y. Huang. Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser. OSA Continuum., 2, 142(2019).

    [23] K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, N. V. Kuleshov. Highly efficient continuous-wave diode-pumped Er,Yb:GdAl3(BO3)4 laser. Opt. Lett., 38, 2446(2013).

    [24] D. D. Mitina, V. V. Maltsev, N. I. Leonyuk, K. N. Gorbachenya, R. V. Deineka, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov. Growth and characterization of RMgB5O10 (R = Y, La, Gd) crystals. Inorg. Mater., 56, 211(2020).

    [25] K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, M. B. Prudnikova, V. V. Maltsev, N. I. Leonyuk, S. Y. Choi, F. Rotermund, N. V. Kuleshov. Passively Q-switched Er,Yb:GdAl3(BO3)4 laser with single-walled carbon nanotube based saturable absorber. Laser Phys. Lett., 14, 035802(2017).

    [26] K. Gorbachenya, V. Kisel, A. Yasukevich, P. Loiko, X. Mateos, V. Maltsev, N. Leonyuk, M. Aguilo, F. Diaz, U. Griebner, V. Petrov, N. Kuleshov. Graphene Q-switched Er,Yb:Gd Al3(BO3)4 laser at 1550 nm. Appl. Opt., 56, 4745(2017).

    [27] W. X. You, Y. F. Lin, Y. J. Chen, Z. D. Luo, Y. D. Huang. Growth and spectroscopic properties of Er3+ single doped and Er3+-Yb3+ co-doped YAl3(BO3)4 crystals. J. Crystal Growth, 270, 481(2004).

    Data from CrossRef

    [1] Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, Yidong Huang. 254?kW, 19?ns passively Q-switched 1522?nm Er:Yb:LuAl3(BO3)4 pulse microlaser at 100?Hz. Optics Express, 29, 36453(2021).

    Songqing Zha, Yujin Chen, Bingxuan Li, Yanfu Lin, Wenbin Liao, Yuqi Zou, Chenghui Huang, Zhanglang Lin, Ge Zhang. High-repetition-rate 1.5 µm passively Q-switched Er:Yb:YAl3(BO3)4 microchip laser[J]. Chinese Optics Letters, 2021, 19(7): 071402
    Download Citation