• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0316001 (2022)
Yanhong Yao1, Lü Qieni1、*, Xiaopeng Chen2, Mingdi Zhang1, and Miaomiao Zhang1
Author Affiliations
  • 1School of Precision Instrument & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Process Technology Department, Luoyang Institute of Electro-Optical Equipment, Aviation Industry Corporation of China, Luoyang , Henan 471009, China
  • show less
    DOI: 10.3788/LOP202259.0316001 Cite this Article Set citation alerts
    Yanhong Yao, Lü Qieni, Xiaopeng Chen, Mingdi Zhang, Miaomiao Zhang. A Few-Mode Waveguide Structure Based on Kagome Lattice[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0316001 Copy Citation Text show less
    References

    [1] Zong Y, Xia S, Tang L et al. Observation of localized flat-band states in Kagome photonic lattices[J]. Optics Express, 24, 8877-8885(2016).

    [2] Lin Z Y, Choi J H, Zhang Q et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 Kagome lattices[J]. Physical Review Letters, 121, 096401(2018).

    [3] Yang Y B, Wang Y C, Li X J et al. Numerical simulation of the photonic bandgap of two-dimensional photonic crystals with kagome lattice[J]. Acta Photonica Sinica, 35, 724-728(2006).

    [4] Wang Z G, Zhang P. Quantum spin hall effect and spin-charge separation in a Kagomé lattice[J]. New Journal of Physics, 12, 043055(2010).

    [5] Kurečić I, Vanderstraeten L, Schuch N. Gapped SU(3) spin liquid with Z3 topological order[J]. Physical Review B, 99, 045116(2019).

    [6] Jiang W, Kang M, Huang H Q et al. Topological band evolution between Lieb and Kagome lattices[J]. Physical Review B, 99, 125131(2019).

    [7] Yang J, Zhao J, Gong C et al. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure[J]. Optics Express, 24, 22454-22460(2016).

    [8] Gebhardt M, Gaida C, Hädrich S et al. Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber[J]. Optics Letters, 40, 2770-2773(2015).

    [9] Xu G Y, Chen Y, Li P L. Three-input all-optical and gate based on two-dimensional photonic crystal[J]. Chinese Journal of Lasers, 47, 1013002(2020).

    [10] Wu R, Ma Y Y, Li L F. Slow light transmission of photonic crystal waveguide with wide bandwidth and large normalized delay bandwidth product[J]. Laser & Optoelectronics Progress, 58, 0723002(2021).

    [11] Ma P, Strasser P, Kaspar P et al. Compact and integrated TM-pass photonic crystal waveguide polarizer in InGaAsP-InP[J]. IEEE Photonics Technology Letters, 22, 1808-1810(2010).

    [12] Ma P, Jäckel H. Low crosstalk waveguide intersections in honeycomb lattice photonic crystals for TM-polarized light[J]. Journal of Optics, 13, 095501(2011).

    [13] Zhang B J, Lu K Q, Zhao C et al. Research on defect solitons in Kagome photonic lattices in centrosymmetric photorefractive crystals[J]. Chinese Journal of Lasers, 43, 1208001(2016).

    [14] Pilehvar E, Kaatuzian H, Danaie M. Improved transmission for 60 degree waveguide bend in Kagome photonic crystal lattice[C], 7-9(2014).

    [15] Schulz S A, Upham J, O’Faolain L et al. Photonic crystal slow light waveguides in a Kagome lattice[J]. Optics Letters, 42, 3243-3246(2017).

    [16] Perez H, Zheltikov A M. Defect guidance in Kagome-clad fibers: the role of photonic band gaps and self-similarity of the lattice[J]. Laser Physics Letters, 14, 015402(2017).

    [17] Pilehvar E, Kaatuzian H, Danaie M. Design of a high-transmission waveguide bend for Kagome photonic crystal lattice[J]. Optik, 126, 1914-1917(2015).

    [18] Emplit P, Hamaide J P, Reynaud F et al. Picosecond steps and dark pulses through nonlinear single mode fibers[J]. Optics Communications, 62, 374-379(1987).

    [19] Yang X F, Huo D X, Hong X K. Periodic transmission and control of optical solitons in optical fibers[J]. Optik, 216, 164752(2020).

    [20] Ryf R, Randel S, Gnauck A H et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing[J]. Journal of Lightwave Technology, 30, 521-531(2012).

    [21] Zhang H, Wang G R, Zhang J W et al. Theoretical study on low crosstalk high-density composite multi-core photonic crystal fiber[J]. Chinese Journal of Lasers, 48, 0706005(2021).

    [22] Plihal M, Maradudin A A. Photonic band structure of two-dimensional systems: the triangular lattice[J]. Physical Review. B, Condensed Matter, 44, 8565-8571(1991).

    [23] Mohammad D, Attari A R, Mirsalehi M M et al. Optimization of two-dimensional photonic crystal waveguides for TE and TM polarizations[J]. Optica Applicata, 38, 1218-1222(2008).

    [24] Zhao Y C, Zhao F, Yuan L B. Sonic waveguide characteristics of heterostructures line defect of in 2D phononic crystal[J]. Journal of Synthetic Crystals, 35, 1190-1194(2006).

    [25] Ge D H, Zhang J H, Zhang L Q et al. Effect of point and linear defects on band-gap properties in triangular-honeycomb structure photonic crystals[J]. IOP Conference Series: Materials Science and Engineering, 170, 012005(2017).

    [26] Ma P, Kaspar P, Jäckel H. Low-loss photonic crystal defect waveguides and taper designs in InP/InGaAsP for transverse magnetic polarized light[J]. Japanese Journal of Applied Physics, 49, 06GG06(2010).

    [27] Ivanova O V, Stoffer R, Kauppinen L J et al. Variational effective index method for 3D vectorial scattering problems in photonics: TE polarization[C], 1038-1042(2009).

    [28] Lavrinenko A, Borel P I, Frandsen L H et al. Comprehensive FDTD modelling of photonic crystal waveguide components[J]. Optics Express, 12, 234-248(2004).

    Yanhong Yao, Lü Qieni, Xiaopeng Chen, Mingdi Zhang, Miaomiao Zhang. A Few-Mode Waveguide Structure Based on Kagome Lattice[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0316001
    Download Citation