• Photonic Sensors
  • Vol. 1, Issue 4, 295 (2011)
Ralph P. TATAM*
Author Affiliations
  • Department of Engineering Photonics, School of Engineering, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
  • show less
    DOI: 10.1007/s13320-011-0041-4 Cite this Article
    Ralph P. TATAM. Applied Optics to Engineering Photonics: a Retrospective[J]. Photonic Sensors, 2011, 1(4): 295 Copy Citation Text show less
    References

    [1] R. P. Tatam, J. D. C. Jones, and D. A. Jackson, “Optical polarization state control schemes using fiber optics or Bragg cells,” J. Phys. E: Sci. Instrum., vol. 19, no. 9, pp. 711-717, 1986.

    [2] R. P. Tatam, J. D. C. Jones, and D. A. Jackson, “Opto-electronic processing schemes for the measurement of circular birefringence,” Optica Acta, vol. 33, no. 12, pp. 1519-1528, 1986.

    [3] C. N. Pannell, R. P. Tatam, J. D. C. Jones, and D. A. Jackson, “Two-dimensional fiber optic laser velocimetry using polarization state control,” J. Phys. E.: Sci. Instrum., vol. 21, no. 1, pp. 103-107, 1988.

    [4] R. P. Tatam, M. Berwick, J. D. C. Jones, and D. A. Jackson, “Faraday effect magnetometry utilizing high Verdet constant glass,” Appl. Phys. Lett., vol. 51, no. 11, pp. 864-866, 1987.

    [5] R. P. Tatam, D. C. Hill, J. D. C. Jones, and D. A. Jackson, “All-fiber optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol., vol. 6, no. 7, pp. 1171-1176, 1988.

    [6] R. P. Tatam and D. A. Jackson, “Remote probe configuration for Faraday effect magnetometry,” Opt. Commun., vol. 72, no. 1, 2, pp. 60-65, 1989.

    [7] R. P. Tatam, M. Berwick, P. Akhavan Leilabady, J. D. C. Jones, and D. A. Jackson, “Applications of Faraday rotation using monomode optical fiber,” in Proc. SPIE, vol. 734, pp. 178-192, 1987.

    [8] A. P. Steer, S. J. Turner, P. R. B. Farrie, D. King, A. N. Tobin, R. P. Tatam, J. D. C. Jones, and D. A. Jackson, “Application of an optical fiber current sensor to electricity supply protection,” in Proc. SPIE, vol. 1120, pp. 324-331, 1989.

    [9] R. P. Tatam, C. N. Pannell, J. D. C. Jones, and D. A. Jackson, “Full polarization state control utilizing linearly birefringent monomode optical fiber,” J. Lightwave Technol., vol. LT-5, no. 7, pp. 980-985, 1987.

    [10] C. N. Pannell, R. P. Tatam, J. D. C. Jones, and D. A. Jackson, “Optical frequency shifter using linearly birefringent monomode Fiber,” Electron. Lett., vol. 23, no. 16, pp. 847-848, 1987.

    [11] C. N. Pannell, R. P. Tatam, J. D. C. Jones, and D. A. Jackson, “A fiber optic frequency shifter utilizing travelling flexure waves in birefringent fiber,” J. IERE, vol. 58, no 5, pp. S92-S98, 1988.

    [12] S. R. Waite, R. P. Tatam, and D. A. Jackson, “Use of optical fiber for damage and strain detection in composite materials,” Composites, vol. 19, no. 6, pp. 435-442, 1988.

    [13] D. J. Webb, R. P. Tatam, and D. A. Jackson, “A novel interferometric liquid refractometer,” Rev. Sci. Instrum., vol. 60, no. 10, pp. 3347-3348, 1989.

    [14] D. J. Webb, R. P. Tatam, J. D. C. Jones, and D. A. Jackson, “A novel technique for polarization mode dispersion measurements in optical fibers,” Opt. Commun., vol. 69, no. 3/4, pp. 230-234, 1989.

    [15] P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol., vol. 7, no. 4, pp. 703-716, 1989.

    [16] ISI Web of Science (wok.mimas.ac.uk), Accessed April 2011.

    [17] R. P. Tatam, G. Rollinson, J. D. C. Jones, and D. A. Jackson, “High resolution optical fiber thermometer: applications to biotechnology,” Biotechnology Techniques, vol. 1, no. 1, pp. 11-14, 1987.

    [18] S. W. James, R. P. Tatam, and R. L. Elder, “Design considerations for a 3D fiber optic laser Doppler velocimeter for turbomachinery applications,” Rev. Sci. Instrum., vol. 68, no. 8, pp. 3241-3246, 1997.

    [19] S. W. James, R. A. Lockey, D. A. Egan, and R. P. Tatam, “Fiber optic based reference beam laser Doppler velocimeter,” Opt. Commun., vol. 119, no. 5-6, pp. 460-464, 1995.

    [20] G. D. Byrne, S. W. James, and R. P. Tatam, “A single-headed fiber optic laser Doppler anemometer probe for the measurement of flow angles,” Meas. Sci. Instrum., vol. 15, no. 1, pp. 1-8, 2004.

    [21] E. Chehura and R. P. Tatam, “In-line laser Doppler velocimetry using fiber optic Bragg grating interferometric filters,” Meas. Sci. Technol., vol. 14, no.6, pp. 724-735, 2003.

    [22] D. Egan, S. W. James, and R. P. Tatam, “On-axis laser Doppler velocimeter for turbomachinery applications using optical fiber techniques,” in Proc. SPIE, vol. 3172, pp. 17-26, 1997.

    [23] D. A. Egan, S. W. James, and R. P. Tatam, “A polarization-based optical fiber vibrometer,” Meas. Sci. Technol., vol. 8, no. 3, pp. 343-347, 1997.

    [24] G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fiber optic reference beam laser Doppler anemometer,” Meas. Sci. Instrum., vol. 12, no. 7, pp. 909-913, 2001.

    [25] R. A. Lockey and R. P. Tatam, “Multi-component time-division multiplexed optical fiber laser Doppler anemometry,” IEE Proc. Optoelec., vol. 144, no. 3, pp. 168-175, 1997.

    [26] H. D. Ford and R. P. Tatam, “Development of extended field Doppler velocimetry for turbomachinery applications,” Opt. Lasers. Eng., vol. 27, no. 6, pp. 675-696, 1997.

    [27] D. S. Nobes, H. D. Ford, and R. P. Tatam, “Instantaneous, three-component planar Doppler velocimetry using imaging fiber bundles,” Expt. Fluids, vol. 36, no. 1, pp. 3-10, 2004.

    [28] D. S. Nobes, B. Weinke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng., vol. 43, no. 2, pp. 407-414, 2004.

    [29] T. O. H. Charrett, H. D. Ford, D. S. Nobes, and R. P. Tatam, “Two-frequency planar Doppler velocimetry,” Rev. Sci. Instrum., vol. 75, no. 11, pp. 4487-4496, 2004.

    [30] T. O. H. Charrett and R. P. Tatam, “Investigation into the selection of viewing configurations for 3D planar Doppler velocimetry (PDV) techniques,” Appl. Opt., vol. 46, no. 19, pp. 4102-4116, 2007.

    [31] Z. H. Lu, T. O. H. Charrett, H. D. Ford, and R. P. Tatam, “Mach-Zehnder interferometric filter based planar Doppler velocimetry (MZI-PDV),” J. Opt. A.: Pure & Appl. Opt., vol. 9, no. 11, pp. 1002-1013, 2007.

    [32] Z. H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurement using Mach-Zehnder interferometric filter based planar Doppler velocimetry,” Meas. Sci. Technol., vol. 20, no. 3, pp. 034019 (15 pages), 2009.

    [33] C. Willert, G. Stockhausen, M. Beversdorff, J. Klinner, C. Lempereur, P. Barricau, J. Quest, and U. Jansen, “Application of Doppler global velocimetry in cryogenic wind tunnels,” Expt. Fluids, vol. 39, no. 2, pp. 420-430, 2005.

    [34] J. F. Meyers, J. W. Lee, M. T. Fletcher, A. A. Cavone, and J. A. G. Viramontes, “Supersonic flow field investigations using a fiber-optic based Doppler global velocimeter,” presented at 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (Paper 1019), Lisbon, Portugal, June 26-29, 2006.

    [35] J. Potter and R. P. Tatam, “Optical condensation measurement in gas turbine engine inlets,” in Proc. SPIE, vol. 3172, pp. 424-435, 1997.

    [36] H. Atcha and R. P. Tatam, “Heterodyning of fiber optic electronic speckle pattern interferometers using laser diode wavelength modulation,” Meas. Sci. Technol., vol. 5, no. 6, pp. 704-709, 1994.

    [37] A. Olszak and R. P. Tatam, “The calibration of the path-length imbalance in optical fiber ESPI systems employing source- wavelength modulation,” Meas. Sci. Technol., vol. 8, no. 7, pp. 759-763, 1997.

    [38] H. D. Ford, H. Atcha, and R. P. Tatam, “Optical fiber technique for measurement of small frequency separations: application to surface profile measurement using electronic speckle pattern interferometry,” Meas. Sci. Technol., vol. 4, no. 5, pp. 601-607, 1993.

    [39] R. P. Tatam, J. C. Davies C. H. Buckberry, and J. D. C. Jones, “Holographic surface contouring using wavelength modulation of laser diodes,” Opt. Las. Technol., vol. 22, no. 5, pp. 317-321, 1990.

    [40] H. Atcha, R. P. Tatam, C. H. Buckberry, J. C. Davies, and J. D. C. Jones, “Surface contouring using TV holography,” in Proc. SPIE, vol. 1504, pp.221-232, 1991.

    [41] R. P. Tatam, “Optical fiber speckle interferometry” in Optical fiber sensor technology, vol. 2 (Devices and technology). K. T. V. Grattan and B. T. Meggitt Ed. London: Chapman & Hall, 1998.

    [42] I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fiber speckle interferometry,” Meas. Sci. Technol., vol. 17, no. 4, pp. 605-616, 2006.

    [43] D. Francis, R. P. Tatam, and R. M. Groves, “Shearography technology and applications: a review,” Meas. Sci. Technol., vol. 21, no. 10, pp. 102001-102029, 2010.

    [44] J. R. Huang, H. D. Ford, and R. P. Tatam “Phase-stepped speckle shearing interferometer by source wavelength modulation,” Opt. Lett., vol. 21, no. 18, pp. 1421-1423, 1994.

    [45] J. R. Huang, H. D. Ford, and R. P. Tatam, “Heterodyning of speckle shearing interferometers using laser diode wavelength modulation,” Meas. Sci. Technol., vol. 7, no. 12, pp. 1721-1727, 1996.

    [46] J. R. Huang, H. D. Ford, and R. P. Tatam, “Slope measurement by two-wavelength electronic shearography,” Opt. Laser Eng., vol. 27, no. 3, pp. 321-333, 1997.

    [47] R. M. Groves, S. W. James, and R. P. Tatam, “Shape and Slope measurement by source displacement in shearography,” Opt. Lasers Eng., vol. 41, no. 4, pp. 124-127, 2004.

    [48] S. W. James and R. P. Tatam, “Time-division-multiplexed 3D shearography,” in Proc. SPIE, vol. 3745, pp. 114-133, 1999.

    [49] R. M. Groves, S. W. James, and R. P. Tatam, “Shadow Moiré method for the determination of the source position in three-dimensional shearography,” Opt. Lasers Eng., vol. 36, no. 4, pp. 317-329, 2001.

    [50] F. Sawaf and R. P. Tatam “Finding minimum spanning trees more efficiently for tile based phase unwrapping,” Meas. Sci. Technol., vol. 17, no. 6, pp. 605-616, 2006.

    [51] R. M. Groves, S. W. James, and R. P. Tatam, “Pipe weld investigation using shearography,” Strain, vol. 39, no. 3, pp. 101-105, 2003.

    [52] R. M. Groves, D. Furfari, S. E. Barnes, S. W. James, S. Fu, P. E. Irving, and R. P. Tatam, “Full-field laser shearography instrumentation for the detection and characterization of fatigue cracks in titanium 10-2-3,” J. ASTM International, vol. 3, no. 4, pp. JAI-12757 (13 pages), 2006.

    [53] R. M. Groves, S. Fu, S. W. James, and R. P. Tatam, “Single-axis combined shearography and digital speckle photography instrument for full surface strain measurement,” Opt. Eng., vol. 44, no. 2, pp. 025602 (6 Pages), 2005.

    [54] R. M. Groves, S. W. James, and R. P. Tatam, “Polarization multiplexed and phase-stepped fiber optic shearography using laser wavelength modulation,” Meas. Sci. Technol., vol. 11, no. 9, pp. 1389-1395, 2000.

    [55] D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement using multi-component shearography with fiber optic imaging bundles,” Meas. Sci. Technol., vol. 18, no. 11, pp. 3583-3591, 2007.

    [56] D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fiber-optic imaging bundles,” Meas. Sci. Technol., vol. 19, no. 10, pp. 105301 (13 pages), 2008.

    [57] T. O. H. Charrett, D. Francis, and R. P. Tatam, “Quantitative shearography: error reduction by using more than three measurement channels,” Appl. Opt., vol. 50, no. 2, pp. 134-146, 2011.

    [58] T. O. H. Charrett, L. Waugh, and R. P. Tatam, “Speckle velocimetry for high accuracy odometry for a Mars exploration rover,” Meas. Sci. Technol., vol. 21, no. 2, pp. 125301 (12 pages), 2010.

    [59] R. A. Zakaria, J. Hodgkinson, and R. P. Tatam, “Characterization of mid-IR sources and detectors for use in NDIR carbon dioxide gas sensing,” presented at Proc. Pittcon 2009 (Paper 3000-2), Chicago, March 8-13,, 2009.

    [60] D. Masiyano, J. Hodgkinson, S. Schilt, and R. P. Tatam, “Self-mixing interference effects in tunable diode laser absorption spectroscopy,” Appl. Phys. B, vol. 96, no. 4, pp. 863-874, 2009.

    [61] D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Use of diffuse reflections in tunable diode laser absorption spectroscopy: implications of laser speckle for gas absorption measurements,” Appl. Phys. B, vol. 90, no. 2, pp. 279-288, 2008.

    [62] J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. part 1: single and dual pass cells,” Appl. Phys. B, vol. 100, no. 2, pp. 291-302, 2010.

    [63] D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. part 2: integrating spheres,” Appl. Phys. B, vol. 100, no. 2, pp. 303-312, 2010.

    [64] J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: pathlength distribution and application of Beer’s law,” Appl. Opt., vol. 48, no. 30, pp. 5748-5758, 2009.

    [65] A. Kannath, J. Hodgkinson, R. G. Gillard, R. J. Riley, and R. P. Tatam, “A VCSEL based system for on-site monitoring of low level methane emission,” in Proc. SPIE, vol. 7952, pp. 79520F, 2011.

    [66] K. Bamford, H. Barr, and R. P. Tatam, “Optical low coherence tomography of bronchial tissue,” in Proc. SPIE, vol. 3858, pp. 172-179, 1999.

    [67] P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fiber Fizeau-based OCT, ” in Proc. SPIE, vol. 5502, pp. 338-341, 2004.

    [68] K. Bamford, J. James, H. Barr, and R. P. Tatam, “Radar detection of precancerous bronchial tissue,” Lasers in Medical Science, vol. 15, no. 3, pp. 188-194, 2000.

    [69] H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fiber-optic based OCT systems,” J. of Mod. Opt., vol. 52, no. 14, pp 1965-1979, 2005.

    [70] H. D. Ford and R. P. Tatam, “Fiber imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol., vol. 18, no. 9, pp.2949-2957, 2007.

    [71] A. Saglam, H. D. Ford, and R. P. Tatam, “Numerical modelling of imaging fiber bundles and their application in optical coherence tomography,” in Proc. SPIE, vol. 7753, pp. 775350 (4 pages), 2011.

    [72] H. D. Ford and R. P. Tatam, “Characterization of optical fiber imaging bundles for swept-source OCT,” Appl. Opt., vol. 50, no. 5, pp. 627-640, 2011.

    [73] H. D. Ford, R. P. Tatam, S. Landahl, and L. Terry, “Investigation of disease in stored onions using optical coherence tomography,” presented at ISHS Postharvest Unlimited (paper no. A7-42011), Leavnworth, WA, USA, May 23-26, 2011.

    [74] C. J. Duffy and R. P. Tatam, “Optical heterodyne carrier generation utilizing stimulated Brillouin scattering in birefringent optical fiber,” Electron. Letts., vol. 27, no. 22, pp. 2004-2006, 1991.

    [75] C. J. Duffy and R. P. Tatam, “Optical frequency shifter technique based on stimulated Brillouin scattering in birefringent optical fiber,” Appl. Opt., vol. 32, no. 30, pp. 5966-5972, 1993.

    [76] O. S. Khan and R. P. Tatam, “Optical frequency shifter based on stimulated Brillouin scattering in a birefringent optical fiber ring resonator,” Opt. Commun., vol. 103, no. 1-2, pp. 161-168, 1993.

    [77] H. D. Ford and R. P. Tatam, “Polarization-based optical fiber wavelength filters,” J. Lightwave Technol., vol. 13, .no. 7, pp. 1435-1444, 1995.

    [78] H. D. Ford and R. P. Tatam, “Multiplexed sensor network employing birefringent fiber WDM’s,” Opt. Commun., vol. 131, no. 4-6, pp 290-294, 1996.

    [79] A. Ezbiri and R. P. Tatam, “Passive signal processing for a miniature Fabry-Perot interferometric sensor using a multimode laser diode source,” Opt. Lett., vol. 20, no. 17, pp. 1818-1820, 1995.

    [80] A. Ezbiri and R. P. Tatam, “Interrogation of low finesse optical fiber Fabry-Perot interferometers using a four wavelength technique,” Meas. Sci. Technol., vol. 7, no. 2, pp. 117-120, 1996.

    [81] A. Ezbiri and R. P. Tatam, “Five wavelength interrogation technique for miniature fiber optic Fabry-Perot sensors,” Opt. Commun., vol. 133, no. 1-6, pp. 62-66, 1997.

    [82] J. Potter, A. Ezbiri, and R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry-Perot interferometric sensors,” Opt. Commun., vol. 140, no. 1-3, pp. 11-14, 1997.

    [83] R. B. Charters, A. Kuczynski, S. E. Staines, R. P. Tatam, and G. J. Ashwell, “In-line fiber optic channel dropping filter using Langmuir-Blodgett films,” Electron. Letts., vol. 30, no. 7, pp. 594-595, 1994.

    [84] R. B. Charters, S. E. Staines, and R. P. Tatam, “In-line fiber-optic components using Langmuir-Blodgett films,” Opt. Letts., vol. 19, no. 23, pp. 2036-2038, 1994.

    [85] D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, “pH Sensor using Langmuir-Blodgett overlays on polished optical fiber,” Opt. Lett., vol. 22, no. 8, pp. 567-569, 1997.

    [86] D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, “Fiber optic chemical sensing using Langmuir-Blodgett overlay waveguides,” Appl. Opt., vol. 38, no. 36, pp. 7370-7374, 1999.

    [87] G. J. Ashwell, G. Jefferies, C. D. George, R. Ranjan, R. B. Charters, and R. P. Tatam, “Z-type Langmuir-Blodgett film structures: surface plasmon resonance, second harmonic generation and fiber optic devices,” J. Mat. Chem., vol. 6, no. 2, pp. 131-136, 1996.

    [88] S. S. Johal, S. E. Staines, S. W. James, R. P. Tatam, and G. J. Ashwell, “A technique for depositing non-centrosymmetric Langmuir-Blodgett films onto optical fiber,” Meas. Sci. Technol., vol. 10, no. 5, pp. N60-N62, 1999.

    [89] S. S. Johal, S. W. James, R. P. Tatam, and G. J. Ashwell, “Second-harmonic-generation in Langmuir-Blodgett waveguide overlays on single mode optical fiber,” Opt. Lett., vol. 24, no. 17, pp. 1194-1196, 1999.

    [90] N. D. Rees, S. W. James, S. E. Staines, G. J. Ashwell, and R. P. Tatam, “Submicrometer fiber optic Fabry-Perot interferometer formed by the use of the Langmuir-Blodgett technique,” Opt. Lett., vol. 26, no. 23, pp. 1840-1842, 2001.

    [91] M. L. Dockney, S. W. James, and R. P. Tatam, “Fiber Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” Meas. Sci. Technol., vol. 7, no. 4, pp. 445-448, 1996.

    [92] S. W. James, M. L. Dockney, and R. P. Tatam, “Photorefractive volume holographic demodulation of in-fiber Bragg grating sensors,” IEEE Photon. Technol. Letts., vol. 8, no. 5, pp. 664-666, 1996.

    [93] C. K. Chatterjea, S. W. James, and R. P. Tatam, “Pseudo-heterodyne signal processing scheme for interrogation of fiber Bragg grating sensor arrays,” in Proc. SPIE, vol. 3478, pp. 266-274, 1998.

    [94] S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors,” Electron. Letts., vol. 32, no 12, pp. 1133-1134, 1996.

    [95] A. Wilson, S. W. James, and R. P. Tatam, “Time-division-multiplexed interrogation of fiber Bragg grating sensors using laser diodes,” Meas. Sci. Technol., vol. 12, no. 2, pp. 181-187, 2001.

    [96] E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fiber Bragg grating,” Opt. Commun., vol. 275, no. 2, pp. 344-347, 2007.

    [97] S. P. Reilly, S. W. James, and R. P. Tatam, “Tuneable and switchable dual wavelength lasers using optical fiber Bragg grating external cavities,” Electron. Letts., vol. 38, no. 18, pp.1033-1034, 2002.

    [98] S. W. James, C. C. Wei, C. C. Ye, R. P. Tatam, and P. E. Irving, “An investigation of the tensile strength of fiber Bragg gratings,” in Proc. SPIE, vol. 3746, pp. 38-41, 1999.

    [99] C. Y. Wei, C. C. Ye, S. W. James, P. E. Irving, and R. P. Tatam, “AFM observation of surface topography of fiber Bragg gratings fabricated in germanium-boron codoped fibers and hydrogen-loaded fibers,” Opt. Mat., vol. 20, no. 4, pp. 283-294, 2002.

    [100] C. Y. Wei, C. C. Ye, S. W. James, R. P. Tatam, and P. E. Irving, “The influence of hydrogen lading and the fabrication process on the mechanical strength of optical fiber Bragg gratings,” Opt. Mat., vol. 20, no. 4, pp. 241-251, 2002.

    [101] M. J. O’Dwyer, S. W. James, C. C. Ye, and R. P. Tatam, “Thermal dependence of the strain response of optical fiber Bragg gratings,” Meas. Sci. Technol., vol. 15, no. 8, pp. 1607-1613, 2004.

    [102] M. J. O’Dwyer, N. D. Dykes, S. W. James, R. P. Tatam, and P. E. Irving, “Impact detection in carbon fiber reinforced polymer composites using in-fiber Bragg gratings,” in Proc. SPIE, vol. 3479, pp. 192-199, 1998.

    [103] C. Y. Wei, S. W. James, C. C. Ye, R. P. Tatam, and P. E. Irving, “Application issues using fiber Bragg gratings as strain sensors in fiber composites,” Strain, vol. 36, no. 3, pp.143-150, 2000.

    [104] R. M. Groves, E. Chehura, W. Li, S. W. James, and R. P. Tatam, “Surface strain measurement: a comparison of speckle shearing interferometry and optical fiber Bragg gratings with resistance foil strain gauges,” Meas. Sci. Technol., vol. 18, no. 5, pp. 1175-1184, 2007.

    [105] M. J. O’Dwyer, G. M. Maistros, S. W. James, R. P. Tatam, and I. K. Partridge, “Relating the state of cure to real time internal strain development in a curing composite using in-fiber Bragg gratings and dielectric sensors,” Meas. Sci. Technol., vol. 9, no. 8, pp. 1153-1158, 1998.

    [106] E. Chehura, A. A. Skordos, C. C. Ye S. W. James, I. K. Partridge, and R. P. Tatam, “Strain development in curing epoxy resin and glass fiber/epoxy composites monitored by fiber Bragg grating sensors in birefringent optical fiber,” Smart Materials and Structures, vol. 14, no. 2, pp. 354-362, 2005.

    [107] S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fiber grating refractometers for resin cure monitoring,” J. Opt. A: Pure and Appl. Opt., vol. 9, no. 6, pp. S60-S65, 2007.

    [108] A. Dimopoulos, S. J. Buggy, A. A. Skordos, S. W. James, R. P. Tatam, and I. K. Partridge, “Monitoring cure in epoxies containing carbon nanotubes using an optical fiber Fresnel refractometer,” J Appl. Poly. Sci., vol. 113, no. 2, pp. 730-735, 2009.

    [109] G. Dell’anno, I. K. Partridge, D. D. R. Cartie, A. Hamlyn, E. Chehura, S. W. James, R. P. Tatam, and R. Lefrancois, “ADVITAC: automated manufacture of 3-D reinforced aerospace structures,” presented at the 1st European Aeronautics Science Network (EASN) workshop on Aerostructures, Paris, France, October, 2010.

    [110] S. W. James, R. P. Tatam, A. Twin, M. Morgan, and P. Noonan, “Strain response of fiber Bragg grating sensors at cryogenic temperatures,” Meas. Sci. Technol., vol. 13, no. 10, pp. 1535-1539, 2002.

    [111] E. Chehura, S. W. James, A. Twin, F. Domptail, and R. P. Tatam, “Multicomponent strain development in superconducting magnet coils using optical fiber grating sensors fabricated in highly linearly birefringent fiber,” in Proc. SPIE, vol. 7503, pp. 75035J (4 pages), 2009.

    [112] C. C. Ye and R. P. Tatam, “Ultrasonic sensing using Yb3+/Er3+- codoped distributed feedback fiber grating lasers,” Smart Materials and Structures, vol. 4, no. 1, pp. 170-176, 2005.

    [113] S. W. James, R. P. Tatam, S. J. Fuller, and C. Crompton, “Monitoring transient strain on a gun barrel using in-fiber Bragg grating sensors,” Meas. Sci. Technol., vol. 10, no. 2, pp. 63-67, 1999.

    [114] S. W. James, S. F. M. Chastin, R. P. Tatam, and G. Boulton, “Geoptical spline: Soil and sediment deformation sensor,” in Proc. IEICE, pp.140-143, 2003.

    [115] J. Li, R. Correira, E. Chehura, S. Staines, S. W. James, and R. P. Tatam, “A fiber Bragg grating based inclinometer system for ground movement measurement,” in Proc.SPIE, vol. 7653, pp. 765314-1-765314-4, 2010.

    [116] J. Li, R. Correia, E. Chehura, S. Staines, S. W. James, R. P. Tatam, A. P. Butcher, and R. Fuentes, “Field monitoring of static, dynamic and statnamic pile loading tests using fiber Bragg grating strain sensors,” in Proc.SPIE, vol. 7503, pp. 75034O-1-75034O-4, 2009.

    [117] E. Chehura, S. W. James, N. Lawson, K. P. Garry, and R. P. Tatam, “Pressure measurements on aircraft wing using phase-shifted fiber Bragg grating sensors,” in Proc. SPIE, vol. 7503, pp. 750334 (4 pages), 2009.

    [118] S. J. Buggy, S. W. James, S. Staines, R. Carroll, P. Kitson, and R. P. Tatam, “Continuous non-destructive optical monitoring of in-situ fishplated joints,” presented at Railway Engineering Conference, London, June 29-30, 2011.

    [119] R. N. Correia, E. Chehura, S. W. James, and R. P. Tatam, “Locally transverse loaded fiber Bragg grating for pressure sensing applications,” Meas. Sci. Technol., vol. 18, no. 10, pp. 3101-3110, 2007.

    [120] R. N. Correia, J. Li, E. Chehura, S. W. James, and R. P. Tatam, “A new transverse loading packaging technique to enhance the load measurement capability of fiber Bragg gratings,” Meas. Sci. Technol., vol. 21, no. 9, article no. 094006 (7 pages), 2010.

    [121] E. Chehura S. W. James, and R. P. Tatam, “A simple and wavelength-flexible procedure for fabricating phase-shifted fiber Bragg gratings,” Meas. Sci. Technol., vol. 21, no. 9, article no. 94001 (7 pages), 2010.

    [122] R. Correia, J. Li, S. Staines, E. Chehura, S. W. James, J. Kutner, P. Dewhurst, P. Ferreira, and R. P. Tatam, “Fiber Bragg grating based effective soil pressure sensor for geotechnical applications,” in Proc. SPIE, vol. 7503, pp. 75030F-1-75030F-4, 2009.

    [123] C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization maintaining fiber Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol., vol. 13 , no. 9, pp. 1446-1449, 2002.

    [124] G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H. P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors, vol. 10, no. 3, pp. 1823-1845, 2010.

    [125] E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fiber Bragg gratings fabricated in stress and geometrically induced high birefringent fibers to temperature and transverse load,” Smart Mat. & Struct., vol. 13, no. 4, pp. 888-895, 2004.

    [126] C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing using long period fiber gratings,” Opt. Lett., vol. 25, no. 14, pp. 1007-1009, 2000.

    [127] S. Khaliq, S. W. James, and R. P. Tatam, “Fiber optic liquid level sensor using a long period grating,” Opt. Lett., vol. 26, no. 16, pp. 1224-1226, 2001.

    [128] S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fiber optic long period grating temperature sensor,” Meas. Sci. Technol., vol. 13, no. 5, pp 792-795, 2002.

    [129] S. W. James, R. P. Tatam, A. Twin, R. Bateman, and P. Noonan, “Cryogenic temperature response of fiber optic long period gratings,” Meas. Sci. Technol., vol. 14, no. 8, pp. 1409-1411, 2003.

    [130] S. W. James and R P. Tatam, “Optical fiber long period grating sensors: characteristics and application,” Meas. Sci. Technol., vol. 14, no. 5, pp. R49-R61, 2003.

    [131] R. P. Murphy, S. W. James, and R. P. Tatam, “Multiplexing of fiber optic long period grating based interferometric sensors,” J. Lightwave Technol., vol. 25, no. 3, pp. 825-829, 2007.

    [132] S. W. James, I. Ishaq, G. J. Ashwell, and R. P. Tatam, “Cascaded long period gratings with nano-structured coatings,” Opt. Lett., vol. 30, no. 17, pp. 2197-2199, 2005.

    [133] I. Ishaq, S. W. James, G. J. Ashwell, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. & Act. B: Chem., vol. 107, no. 2, pp. 738-741, 2005.

    [134] S. W. James and R. P. Tatam, “Fiber optic sensors with nano-structured coatings,” J. Opt. A: Pure Appl. Opt., vol. 8, no. 7, pp. S430-S444, 2006.

    [135] S. W. James, C. S. Cheung, and R. P. Tatam, “Experimental observations on the response of 1st and 2nd order fiber optic long period grating coupling bands to the deposition of nanostructured coatings,” Opt. Express, vol. 15, no. 20, pp. 13096-13107, 2007.

    [136] S. C. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B, vol. 25, no. 6, pp. 897-902, 2008.

    [137] S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapour sensing of volatile organic compounds,” Sensors Actuators B: Chem., vol. 143, no. 2, pp. 629-634, 2010.

    [138] S. Korposh, S. W. James, S. W. Lee, S. M. Topliss, S. C. Cheung, W. J. Batty, and R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express., vol. 18, no. 12, pp. 13227-13238, 2010.

    [139] R. Jarzebinska, S. W. James, and R. P. Tatam, “Response of the transmission spectrum of tapered optical fibers to the deposition of a nanostructured coating,” Meas. Sci. Technol., vol. 20, no. 3, article no. 034001 (6 pages), 2009.

    Ralph P. TATAM. Applied Optics to Engineering Photonics: a Retrospective[J]. Photonic Sensors, 2011, 1(4): 295
    Download Citation