• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2327001 (2021)
Rui Xu and Shengmei Zhao*
Author Affiliations
  • Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210003, China
  • show less
    DOI: 10.3788/LOP202158.2327001 Cite this Article Set citation alerts
    Rui Xu, Shengmei Zhao. Sending or Not Sending Quantum Key Distribution Based on Heralded Pair-Coherent Source[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2327001 Copy Citation Text show less
    References

    [1] Zhao S M, Zheng B Y[M]. Quantum information processing technology(2010).

    [2] Hu K, Mao Q P, Zhao S M. Round robin differential phase shift quantum key distribution protocol based on heralded single photon source and detector decoy state[J]. Acta Optica Sinica, 37, 0527002(2017).

    [3] Gottesman D, Lo H K, Lutkenhaus N et al. Security of quantum key distribution with imperfect devices[C], 136(2004).

    [4] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 94, 230503(2005).

    [5] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 94, 230504(2005).

    [6] Brassard G, Lutkenhaus N, Mor T et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 85, 1330-1333(2000).

    [7] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).

    [8] Curty M, Lewenstein M, Lütkenhaus N. Entanglement as a precondition for secure quantum key distribution[J]. Physical Review Letters, 92, 217903(2004).

    [9] Takeoka M, Guha S, Wilde M M. Fundamental rate-loss tradeoff for optical quantum key distribution[J]. Nature Communications, 5, 5235(2014).

    [10] Pirandola S, Laurenza R, Ottaviani C et al. Fundamental limits of repeaterless quantum communications[J]. Nature Communications, 8, 15043(2017).

    [11] Lucamarini M, Yuan Z L, Dynes J F et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 557, 400-403(2018).

    [12] Ma X F, Zeng P, Zhou H Y. Phase-matching quantum key distribution[J]. Physical Review X, 8, 031043(2018).

    [13] Wang X B, Yu Z W, Hu X L. Twin-field quantum key distribution with large misalignment error[J]. Physical Review A, 98, 062323(2018).

    [14] Cui C H, Yin Z Q, Wang R et al. Twin-field quantum key distribution without phase postselection[J]. Physical Review Applied, 11, 034053(2019).

    [15] Curty M, Azuma K, Lo H K. Simple security proof of twin-field type quantum key distribution protocol[J]. Npj Quantum Information, 5, 64(2019).

    [16] Lin J, Lütkenhaus N. Simple security analysis of phase-matching measurement-device-independent quantum key distribution[J]. Physical Review A, 98, 042332(2018).

    [17] Jiang C, Yu Z W, Hu X L et al. Sending-or-not-sending twin-field quantum key distribution with discrete-phase-randomized weak coherent states[J]. Physical Review Research, 2, 043304(2020).

    [18] Xu H, Yu Z W, Jiang C et al. Sending-or-not-sending twin-field quantum key distribution: breaking the direct transmission key rate[J]. Physical Review A, 101, 042330(2020).

    [19] Minder M, Pittaluga M, Roberts G L et al. Experimental quantum key distribution beyond the repeaterless secret key capacity[J]. Nature Photonics, 13, 334-338(2019).

    [20] Liu Y, Yu Z W, Zhang W J et al. Experimental twin-field quantum key distribution through sending or not sending[J]. Physical Review Letters, 123, 100505(2019).

    [21] Agarwal. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission[J]. Physical Review Letters, 57, 827-830(1986).

    [22] Usenko V C, Paris M G A. Multiphoton communication in lossy channels with photon-number entangled states[J]. Physical Review A, 75, 043812(2007).

    [23] Zhang S L, Zou X B, Li C F et al. A universal coherent source for quantum key distribution[J]. Chinese Science Bulletin, 54, 1863-1871(2009).

    [24] Wang L, Zhao S M. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources[J]. Quantum Information Processing, 16, 1-15(2017).

    [25] He Y F, Zhao Y K, Guo J R et al. Statistical fluctuation analysis of quantum key distribution protocols based on heralded pair coherent state[J]. Acta Optica Sinica, 40, 0727002(2020).

    [26] Shen Z G, Wang L, Mao Q P et al. Round-robin differential phase shift quantum key distribution protocol based on orbital angular momentum[J]. Acta Optica Sinica, 39, 0227001(2019).

    [27] He Y F, Yang H J, Wang D et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum[J]. Acta Optica Sinica, 39, 0427001(2019).

    [28] He Y F, Zhao Y K, Li C Y et al. Measurement-device-independent quantum key distribution of finite detector’s dead time in heralded pair coherent state[J]. Acta Optica Sinica, 40, 2427001(2020).

    [29] He Y F, Li C Y, Guo J R et al. Passive measurement-device-independent quantum key distribution based on heralded pair coherent states[J]. Chinese Journal of Lasers, 47, 0912002(2020).

    [30] Yu Z W, Hu X L, Jiang C et al. Sending-or-not-sending twin-field quantum key distribution in practice[J]. Scientific Reports, 9, 3080(2019).

    [31] Wang X B, Yang L, Peng C Z et al. Decoy-state quantum key distribution with both source errors and statistical fluctuations[J]. New Journal of Physics, 11, 075006(2009).

    [32] Zhou Y H, Yu Z W, Wang X B. Making the decoy-state measurement-device-independent quantum key distribution practically useful[J]. Physical Review A, 93, 042324(2016).

    Rui Xu, Shengmei Zhao. Sending or Not Sending Quantum Key Distribution Based on Heralded Pair-Coherent Source[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2327001
    Download Citation