• Chinese Optics Letters
  • Vol. 21, Issue 9, 092702 (2023)
Li Li1、2, Yu-Hao Pan1、2, Yi-Jia Liu1、2, Xiao-Long Zhou1、2, Dong-Yu Huang1、2, Ze-Min Shen1、2, Jian Wang1、2、*, Chuan-Feng Li1、2、3, and Guang-Can Guo1、2、3
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • show less
    DOI: 10.3788/COL202321.092702 Cite this Article Set citation alerts
    Li Li, Yu-Hao Pan, Yi-Jia Liu, Xiao-Long Zhou, Dong-Yu Huang, Ze-Min Shen, Jian Wang, Chuan-Feng Li, Guang-Can Guo. Experimental realization of strong coupling between a cold atomic ensemble and an optical fiber microcavity[J]. Chinese Optics Letters, 2023, 21(9): 092702 Copy Citation Text show less
    References

    [1] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165(2007).

    [2] I. M. Georgescu, S. Ashhab, F. Nori. Quantum simulation. Rev. Mod. Phys., 86, 153(2014).

    [3] H. Walther, B. T. H. Varcoe, B.-G. Englert, T. Becker. Cavity quantum electrodynamics. Rep. Prog. Phys., 69, 1325(2006).

    [4] H. J. Kimble. The quantum internet. Nature, 453, 1023(2008).

    [5] A. Reiserer, G. Rempe. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys., 87, 1379(2015).

    [6] N. Meher, S. Sivakumar. A review on quantum information processing in cavities. Eur. Phys. J. Plus, 137, 985(2022).

    [7] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O’Brien. Quantum computers. Nature, 464, 45(2010).

    [8] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young, J. R. K. Cline, A. M. Rey, J. K. Thompson. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature, 580, 602(2020).

    [9] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, R. J. Warburton. A gated quantum dot strongly coupled to an optical microcavity. Nature, 575, 622(2019).

    [10] H. Takahashi, E. Kassa, C. Christoforou, M. Keller. Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity. Phys. Rev. A., 95, 033812(2017).

    [11] B. P. Lanyon, J. D. Whitfield, G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, A. G. White. Towards quantum chemistry on a quantum computer. Nat. Chem., 2, 106(2010).

    [12] B. Hacker, S. Welte, G. Rempe, S. Ritter. A photon–photon quantum gate based on a single atom in an optical resonator. Nature, 536, 193(2016).

    [13] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, G. Rempe. A quantum-logic gate between distant quantum-network modules. Science, 371, 614(2021).

    [14] M. Brekenfeld, D. Niemietz, J. D. Christesen, G. Rempe. A quantum network node with crossed optical fibre cavities. Nature, 16, 647(2020).

    [15] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe. An elementary quantum network of single atoms in optical cavities. Nature, 484, 195(2012).

    [16] M. Gessner, A. Smerzi, L. Pezzè. Multiparameter squeezing for optimal quantum enhancements in sensor networks. Nat. Commun., 11, 3817(2020).

    [17] C. Hamsen, K. N. Tolazzi, T. Wilk, G. Rempe. Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett., 118, 133604(2017).

    [18] A. Kuhn, D. Ljunggren. Cavity-based single-photon sources. Contemp. Phys., 51, 289(2010).

    [19] R. Rosa-Medina, F. Ferri, F. Finger, N. Dogra, K. Kroeger, R. Lin, R. Chitra, T. Donner, T. Esslinger. Observing dynamical currents in a non-Hermitian momentum lattice. Phys. Rev. Lett., 128, 143602(2022).

    [20] F. Ferri, R. Rosa-Medina, F. Finger, N. Dogra, M. Soriente, O. Zilberberg, T. Donner, T. Esslinger. Emerging dissipative phases in a superradiant quantum gas with tunable decay. Phys. Rev. X, 11, 041046(2021).

    [21] M. Landini, N. Dogra, K. Kroeger, L. Hruby, T. Donner, T. Esslinger. Formation of a spin texture in a quantum gas coupled to a cavity. Phys. Rev. Lett., 120, 223602(2018).

    [22] H. Ritsch, P. Domokos, F. Brennecke, T. Esslinger. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 85, 553(2013).

    [23] Z. Li, B. Braverman, S. Colombo, C. Shu, A. Kawasaki, A. F. Adiyatullin, E. Pedrozo-Peñafiel, E. Mendez, V. Vuletić. Collective spin-light and light-mediated spin-spin interactions in an optical cavity. PRX Quantum, 3, 020308(2022).

    [24] F. Mivehvar, F. Piazza, T. Donner, H. Ritsch. Cavity QED with quantum gases: new paradigms in many-body physics. Adv. Phys., 70, 1(2021).

    [25] I. B. Mekhov, H. Ritsch. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light–matter interaction. J. Phys. B At. Mol. Opt. Phys., 45, 102001(2012).

    [26] M.-J. Hwang, M. B. Plenio. Quantum phase transition in the finite Jaynes-Cummings lattice systems. Phys. Rev. Lett., 117, 123602(2016).

    [27] M. Hosseini, Y. Duan, K. M. Beck, Y.-T. Chen, V. Vuletić. Cavity cooling of many atoms. Phys. Rev. Lett., 118, 183601(2017).

    [28] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature, 450, 272(2007).

    [29] M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk, G. Rempe. Three-photon correlations in a strongly driven atom-cavity system. Phys. Rev. Lett., 107, 023601(2011).

    [30] H. M. Meyer, R. Stockill, M. Steiner, C. Le Gall, C. Matthiesen, E. Clarke, A. Ludwig, J. Reichel, M. Atatüre, M. Köhl. Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett., 114, 123001(2015).

    [31] H. Takahashi, E. Kassa, C. Christoforou, M. Keller. Strong coupling of a single ion to an optical cavity. Phys. Rev. Lett., 124, 013602(2020).

    [32] J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, J. Estève. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry–Perot cavity. New J. Phys., 15, 045002(2013).

    [33] D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, V. Sandoghdar. Coherent coupling of a single molecule to a scanning Fabry-Perot microcavity. Phys. Rev. X, 7, 021014(2017).

    [34] A. Pscherer, M. Meierhofer, D. Wang, H. Kelkar, D. Martín-Cano, T. Utikal, S. Götzinger, V. Sandoghdar. Single-molecule vacuum rabi splitting: four-wave mixing and optical switching at the single-photon level. Phys. Rev. Lett, 127, 133603(2021).

    [35] P. Yang, X. Xia, H. He, S. Li, X. Han, P. Zhang, G. Li, P. Zhang, J. Xu, Y. Yang, T. Zhang. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity. Phys. Rev. Lett., 123, 233604(2019).

    [36] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, M. D. Lukin. Coupling a single trapped atom to a nanoscale optical cavity. Science, 340, 1202(2013).

    [37] A. Kawasaki, B. Braverman, E. Pedrozo-Peñafiel, C. Shu, S. Colombo, Z. Li, ö. özel, W. Chen, L. Salvi, A. Heinz, D. Levonian, D. Akamatsu, Y. Xiao, V. Vuletić. Geometrically asymmetric optical cavity for strong atom-photon coupling. Phys. Rev. A, 99, 013437(2019).

    [38] J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, M. S. Chapman. Cavity QED with optically transported atoms. Phys. Rev. A., 69, 051804(2004).

    [39] J. M. Raimond, M. Brune, S. Haroche. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 73, 565(2001).

    [40] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, J. Reichel. A fiber Fabry–Perot cavity with high finesse. New J. Phys., 12, 065038(2010).

    [41] Y. Pan, L. Li, X. Zhou, D. Huang, Z. Shen, J. Wang, C. Li, G. Guo. Fabrication, testing, and assembly of high-finesse optical fiber microcavity for molecule cavity QED experiment. Chin. Opt. Lett., 20, 122702(2022).

    [42] M. Ruf, M. J. Weaver, S. B. van Dam, R. Hanson. Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a Fabry-Perot microcavity. Phys. Rev. Appl., 15, 024049(2021).

    [43] M. H. Bitarafan, R. G. DeCorby. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information. Sensors, 17, 1748(2017).

    [44] G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, J. Schmiedmayer. Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. U.S.A., 112, 3866(2015).

    [45] Y. Duan, M. Hosseini, K. M. Beck, V. Vuletić. Heralded interaction control between quantum systems. Phys. Rev. Lett., 124, 223602(2020).

    [46] J.-M. Cui, K. Zhou, M.-S. Zhao, M.-Z. Ai, C.-K. Hu, Q. Li, B.-H. Liu, J.-L. Peng, Y.-F. Huang, C.-F. Li, G.-C. Guo. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings. Appl. Phys. Lett., 112, 171105(2018).

    [47] J. Goldwin, S. Inouye, M. L. Olsen, B. Newman, B. D. DePaola, D. S. Jin. Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K. Phys. Rev. A, 70, 021601(2004).

    [48] M. Greiner, I. Bloch, T. W. Hänsch, T. Esslinger. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A, 63, 031401(2001).

    [49] S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, D. Meschede. Deterministic delivery of a single atom. Science, 293, 278(2001).

    [50] T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E. Pritchard, W. Ketterle. Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett., 88, 020401(2001).

    [51] J. Léonard, M. Lee, A. Morales, T. M. Karg, T. Esslinger, T. Donner. Optical transport and manipulation of an ultracold atomic cloud using focus-tunable lenses. New J. Phys., 16, 093028(2014).

    [52] F. Ferri, A. La Rooij, C. Lebouteiller, P.-A. Bourdel, M. Baghdad, S. Schwartz, S. Garcia, J. Reichel, R. Long. An optical elevator for precise delivery of cold atoms using an acousto-optical deflector. New J. Phys., 24, 043013(2022).

    [53] T. Kampschulte, J. Hecker Denschlag. Cavity-controlled formation of ultracold molecules. New J. Phys., 20, 123015(2018).

    [54] D. Wellnitz, S. Schütz, S. Whitlock, J. Schachenmayer, G. Pupillo. Collective dissipative molecule formation in a cavity. Phys. Rev. Lett., 125, 193201(2020).

    [55] J. Galego, F. J. Garcia-Vidal, J. Feist. Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys. Rev. X, 5, 041022(2015).

    [56] J. Flick, M. Ruggenthaler, H. Appel, A. Rubio. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad. Sci. U.S.A., 114, 3026(2017).

    [57] Y. Pan, L. Li, X. Zhou, D. Huang, Z. Shen, J. Wang, C. Li, G. Guo. Feedback and compensation scheme to suppress the thermal effects from a dipole trap beam for the optical fiber microcavity. Opt. Express, 30, 46280(2022).

    [58] Z.-M. Shen, X.-L. Zhou, D.-Y. Huang, Y.-H. Pan, L. Li, J. Wang, C.-F. Li, G.-C. Guo. Continuously and widely tunable frequency-stabilized laser based on an optical frequency comb. Rev. Sci. Instrum., 94, 023001(2023).

    [59] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, G. Rempe. Normal-mode spectroscopy of a single-bound-atom–cavity system. Phys. Rev. Lett., 94, 033002(2005).

    [60] A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, H. J. Kimble. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett., 93, 233603(2004).

    [61] J. Gallego, W. Alt, T. Macha, M. Martinez-Dorantes, D. Pandey, D. Meschede. Strong purcell effect on a neutral atom trapped in an open fiber cavity. Phys. Rev. Lett., 121, 173603(2018).

    [62] J. Dalibard, C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B, 6, 2023(1989).

    [63] J. A. Devlin, M. R. Tarbutt. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states. New J. Phys., 18, 123017(2016).

    Li Li, Yu-Hao Pan, Yi-Jia Liu, Xiao-Long Zhou, Dong-Yu Huang, Ze-Min Shen, Jian Wang, Chuan-Feng Li, Guang-Can Guo. Experimental realization of strong coupling between a cold atomic ensemble and an optical fiber microcavity[J]. Chinese Optics Letters, 2023, 21(9): 092702
    Download Citation