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The cavity quantum electrodynamics (QED) system is a promising platform for quantum optics and quantum information
experiments. Its core is the strong coupling between atoms and optical cavity, which causes difficulty in the overlap
between the atoms and the antinode of optical cavity mode. Here, we use a programmable movable optical dipole trap
to load a cold atomic ensemble into an optical fiber microcavity and realize the strong coupling between the atoms
and the optical cavity in which the coupling strength can be improved by polarization gradient cooling and adiabatic loading.
By the measurement of vacuum Rabi splitting, the coupling strength can be as high as gN = 2π × 400MHz, which means the
effective atom number is Neff = 16 and the collective cooperativity is CN = 1466. These results show that this experimental
system can be used for cold atomic ensemble and cold molecule based cavity QED research.
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1. Introduction

The cavity quantum electrodynamics (QED) system is a plat-
form for research of light–matter interaction that is important
for quantum science and provides good test beds for quantum
applications such as quantum communication[1], quantum sim-
ulation[2], and quantum computation[3–7]. The basis of the sys-
tem is a single atom interacting with a single mode of an optical
cavity, in which the atomic emission and optical cavity mode can
be remarkably changed to coherently manipulate and detect the
atomic state, and do the same to other matters such as quantum
dots, trapped ions, and cold molecules[8–11]. The interaction
between the atom and the optical cavity mode can support quan-
tum applications, such as quantum-logic gate and quantum net-
work node, and increase the scatter area of photons and atoms,
which can be used as single photon sources[12–18]. The atomic
ensemble in the optical cavity can attain stronger interaction
compared with a single atom due to the collective action, and
has been increasingly involved in ultracold quantum gases
and quantum precision measurement and sensing[19–27].
The strong coupling regime is a core of the cavity QED sys-

tem, which has been realized with matters such as cold atoms,
trapped ions, quantum dots, and organic molecules[28–34]. The
coupling strength g represents the interaction between the atom

and the optical cavity mode, and the dissipative rates are cavity-
field decay rate κ and atomic decay rate γ[35–39]. Cooperativity,
denoted by C, is commonly used to characterize this regime
when it is bigger than unity and when g is bigger than κ and γ,

C =
g2

2κγ
, (1)

g = d
�����������
πωc

hε0V

r
, (2)

where d is the electric dipole moment, ε0 is the vacuum permit-
tivity, h is the Planck’s constant, ωc is the optical cavity mode
resonant frequency, and V represents the optical cavity mode
volume. To reach the strong coupling regime, the coupling
strength must be large enough so the optical cavity mode is gen-
erally designed to be sufficiently tiny, as shown in Eq. (2). A
fiber-based microcavity integrated on optical fibers allows for
small open quantum devices with favorable scaling properties,
including structure stability and tiny volume[40–46]. The small
size at themicrometer scale followed by applicable mode volume
can support the strong coupling with atoms and be conveniently
integrated into the fiber-based quantum system. Cold atoms are
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commonly prepared by a magneto-optical trap (MOT) and nor-
mally cannot be directly formed in such a microcavity instead by
transporting atoms from the MOT to the optical cavity. The
transport scheme mostly contains two ways of moving the mag-
netic trap, which uses a movable anti-Helmholz coil pair or a
magnetic quadrupole trap[47,48], and moves through an optical
dipole trap, which is achieved by an adjustable lens or an optical
conveyor belt using an optical lattice[49–52]. During the transport
process, it is significant to prevent atoms from heating and attain
a loading efficiency that gets enough atoms into the optical cav-
ity mode for strong coupling. Polarization gradient cooling
(PGC) and adiabatic loading are used to attain these require-
ments, which can decrease atomic temperature and load more
atoms into the optical cavity mode.
Here, we use a programmable movable optical dipole trap

(ODT) at 1064 nm to transport the cold atomic ensemble from
the MOT into the optical fiber microcavity mode, and the accu-
racy attains the requirements formaximal strong coupling. Then
the spectrum of the coupled atom–cavity is scanned out, which
shows the strong coupling is realized. The PGC and adiabatic
loading are performed to improve the coupling strength, which
increases the gN to 2π × 400MHz followed by the effective atom
number Neff of 16 and the collective cooperativity CN of 1466.
The results show good strong coupling of the system, which can
be used to enhance the molecular formation and nondestruc-
tively measure it by detecting the emitted photons collected
by the optical fiber microcavity during the formation proc-
ess[53,54]. Owing to the small mode volume of the optical fiber
microcavity, the formed molecules can be used to realize strong
coupling and other relevant cold molecule cavity QED
experiments[55,56].

2. Experiment and Results

2.1. Experimental setup

The cold 85Rb atom is prepared by a MOT in the D2 line
(γ = 2π × 3.03MHz). The trapping laser is 12MHz red-detuned
with the cycling transition jF = 3i → jF 0 = 4i, and the repump-
ing transition is resonant with jF = 2i → jF 0 = 3i. The radius of
the trapping and repumping laser beam is about 2 mm, which
forms the MOT with a diameter of about 800 μm. The cavity
length of the optical fiber microcavity is about 113 μm, and
the decay rate κ = 2π × 18MHz [half the full width at half-
maximum (FWHM)][41]. The optical cavity mode that resonates
with atom transition ωa is locked to the 850 nm cavity longi-
tudinal mode frequency. which forms the 850 nm optical lattice
to trap atoms. The resonant transition ωa is resonant with
jF = 3i → jF 0 = 4i and is employed to probe the coupled sys-
tem. The coupling strength g0 is expected to be 2π × 97.5MHz,
which is the best coupled case when a single atom is placed at the
center of the optical cavity mode. The MOT is formed below the
optical fibermicrocavity with 5mm for its big scale so the atomic
ensemble is transported from the MOT to the optical fiber
microcavity.

The transport scheme is realized by a programmable movable
optical dipole trap with a 10 W fiber laser at 1064 nm and an
acousto-optic deflector (AOD), as shown in Fig. 1(a). The diam-
eter of the fiber laser beam is expanded from 1 to 5 mm by a lens
group before being diffracted by the AOD with an active aper-
ture of 7 mm. The first diffracted laser beam is used and focused
through a 125 mm achromatic lens to a diameter of 30 μm onto
the MOT, which can cover the optical cavity mode with a waist
radius of 4.9 μm and avoid shining on the optical fiber micro-
cavity. When focused into the optical cavity, the 1064 nm laser
power at MOT goes down linearly from 4W to 500 mW, which
can reduce the thermal effect of the optical fiber microcavity
caused by the high-power laser[57,58]. To precisely transport
atoms, a programmable arbitrary waveform generator (AWG)
is used to generate the microwave amplified by a microwave
amplifier to drive the AOD and keep the diffraction efficiency
above 75% throughout the transport process. The angle of the
first diffracted laser beam is changed to transport the atoms
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Fig. 1. (a) Schematic diagram of the transport setup from MOT to the optical
cavity mode. The 1064 nm ODT and 780 nm repumping laser beams are com-
bined with a dichroic mirror and focused through an achromatic lens. The
atoms are trapped in the 850 nm optical lattice, and the 780 nm probe laser
is along the optical cavity axis, shown in the upper right. The 850 nm and
780 nm lasers are coupled into the optical cavity mode from the HT cavity
mirror. HT, high-transmission cavity mirror; LT, low-transmission cavity mirror;
(b) Experimental time sequence; T1, T2, T3, and T4 are different values in fol-
lowed transport strategies. The ωc is the optical cavity resonant frequency,
and the ωscan is the scanning width of the 780 nm probe frequency.
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by altering the frequency of the microwave. The cosine profile is
adopted for the transport velocity and the microwave signal S is
described by

S = sin φ, (3)

dφ
dt

= 2π�A� B cos�πω0t��, (4)

A = ω1 �
ω2 − ω1

2
, B =

ω2 − ω1

2
, ω0 =

1
T
, (5)

where ω1 and ω2 are the microwave frequencies of diffracting
the laser beam at the positions of the optical cavity and the
MOT, respectively, and T is the transport time duration with
a value of 100 ms, as shown in Fig. 1(b). With the active accel-
eration-
deceleration strategy, the transport scheme provides adequate
atoms and reduces motion heating, as shown in Fig. 2.
To ensure the best overlap between the atomic ensemble and

the optical cavity mode, the first diffracted laser waist is required
to be placed at the center of the mode where the atom cavity is
mostly coupled. The mismatch between the waist and the center
is minimized by adjusting the microwave frequency of the AWG
and the position of the 125 mm lens, which is placed at a 3D
translation stage, as shown in Fig. 1(a). The geometrical center
of the MOT is placed at the center of 1064 nm ODT where the
atomic loading from MOT to the ODT is optimal by adjusting
the 780 nm laser beam path and the position of magnetic field

coil. To pinpoint the atoms in the optical cavity mode, we use
two cameras (CMOS-DC1240x and EMCCD-iXon 888) to sep-
arately image the 1064 nmODT at theMOT and the optical cav-
ity, as shown in Fig. 3. In Fig. 3(b), 780 nmMOT trapping laser is
used to excite the atoms and the atomic fluorescence is collected
for imaging. The atomic fluorescence in the optical cavity is
stronger than other parts of the 1064 nmODT, which can deter-
mine the height position of 1064 nmODT bymaking the bright-
est fluorescence with the 125 mm lens and the AWG.

2.2. Results

To probe the strongly coupled system, the vacuum Rabi splitting
(VRS) with the value corresponding to 2g is measured, which
characterizes the coupling strength of the atom–cavity sys-
tem[59–61]. For the atomic ensemble and the optical cavity mode,
the collective coupling constant is gN =

���������
Neff

p
· g0, in which

Neff , called the effective atom number, shows the equivalent
number of the atoms in the best coupled case and the collective
cooperativity is CN = Neff · C0. Due to the good coupling
strength of the system requiring a wide range of the frequency
sweeping, the energy spectrum is obtained by scanning the fre-
quency of a 780 nm distributed feedback (DFB) laser controlled
by diode current. The spectrum shows the VRS when the atomic
ensemble is accurately loaded into the optical cavity mode, and
provides the collective coupling constant gN followed by the col-
lective cooperativity CN and the effective atom numberNeff . The
experimental time sequence is described by Fig. 1(b), and the
atomic ensemble is directly transported to the optical cavity with
T1 = 500ms, T2 = 0ms, T3 = 15ms, and T4 = 0ms. The
1064 nm ODT power in the optical cavity is 500 mW, and
the 850 nm power before the fiber coupling input is 40 μW.
The probe photon counts are collected by a single-photon
counter, which is set suitably for the optimal signal-to-noise
ratio. In Fig. 4, the spectrum of the system is scanned out with
a width of ωscan = 750MHz. The reflection spectrum shows no
significant splitting but rather a photon blockade. The transmis-
sion spectrum exhibits a little frequency shift, and the photon
counts are far below the reflected counts because it is being col-
lected from the low-transmission (LT) cavity mirror, as shown
in Fig. 1(a). The photon blockade shows inefficient transport
with a small effective atom number followed by a little gN ,
and this can be illustrated by the transport process and the direct
loading heat and loss of the atoms.

3. Coupling Strength Optimization

Before transporting the atoms, polarization gradient cooling is
performed to lower the atomic temperature, which improves
the atom–cavity coupling strength as follows[62,63]. To loadmore
atoms into the 850 nm optical lattice, the adiabatic loading
scheme is chosen, as the 850 nm laser power ramps up while
the 1064 nm power goes down. Different transport strategies
are compared, and the corresponding VRS is scanned out as
follows.
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Fig. 2. (a) Transport process of the atoms from MOT to the optical cavity.
(b) The atoms’ velocity profile is the active acceleration-deceleration strategy.

Fig. 3. (a) Image of the 1064 nm ODT at MOT. The yellow ring is the location of
the MOT. (b) Image of the 1064 nm ODT at the position of optical cavity; the A
rectangular box represents atomic fluorescence in the optical cavity.
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3.1. PGC

Before transporting atoms, the PGC is performed with time
durations T1 = 490ms and T2 = 10ms, while the 850 nm power
is still 40 μW and the scanning width ωscan is 1600 MHz. As
shown in Fig. 4(c), there is a little VRS of 2π × 90MHz that rep-
resents the effective atom number Neff = 0.2 and the collective
cooperativity CN = 18. This shows the strong coupling and illus-
trates that PGC improves atomic transport efficiency.
To investigate the influence of trap depth of the 850 nm opti-

cal lattice, the power of the 850 nm laser is reduced to 20 μW.
The VRS with 2π × 421 MHz is attained, which represents the
effective atom number Neff = 4 and the collective cooperativity
CN = 404 in Fig. 4(c). The stronger coupling shows a shallower
depth of the 850 nm optical lattice helps load more atoms into
the optical cavity mode with less collision loss, but it is not con-
ducive to certain experiments that require atomic collision and
long trap time.

3.2. Adiabatic loading

To transport more atoms into the high-depth trap, adiabatic
loading is proposed to ramp the 1064 nm ODT power down
while ramping the 850 nm power up. The atomic ensemble is
directly transported without PGC for comparison, and in the
optical cavity, the 1064 nm power linearly descends; meanwhile,
the 850 nm power linearly rises from 4 to 40 μWwith time dura-
tions T3 = 5ms and T4 = 10ms. In Table 1, the VRS is
2π × 640MHz, where the effective atom number Neff = 10
and the collective cooperativity CN = 938, which means there
is a good strong coupling.

The result shows the adiabatic loading can effectively load the
atoms into the optical cavity mode. And it means that atoms can
be loaded into the high-depth trap while holding a wellNeff . The
scheme is useful for atomic storage and collision experiments,
such as cavity-controlled molecular formation.

3.3. PGC and adiabatic loading

The PGC and adiabatic loading are combined with time dura-
tions T1 = 490ms, T2 = 10ms, T3 = 5ms, and T4 = 10ms.
The VRS of 2π × 800MHz is achieved, corresponding to the
effective atom numberNeff = 16 and the collective cooperativity
CN = 1466, which represents a fairly good strong coupling. As
shown in Fig. 5, the splitting peak of the spectrum is smaller
than the optical cavity peak due to the larger detuning, and
the transmission spectrum also shows a visible splitting due
to the good VRS. The result can be used in relevant experiments
such as the optical switch and cavity-controlled molecular
formation[35,53,54].
Atoms will fall into different internal states due to incoherent

processes such as atomic collision, so the MOT repumping laser
is applied to optical pump atoms at the optical cavity into the
jF = 3i level along the radial direction when loading the atoms
into the optical cavity mode, as shown in Fig. 1(a), upper right.
When the radial 780 nm repumping laser is tuned to the 780 nm
cooling laser, which will pump the atoms into the jF = 2i level,
there is a frequency shift instead of VRS that is described by

Δshift =
g 02
N

Δc
, (6)

Δc = ωc − ω 0
a, (7)

Table 1. Results of the Strong Coupling Correspond to Different Transport
Strategies.

Transport Strategy CN gN (MHz) Neff

PGC + no adiabatic loading 18 2π × 45 0.2

no PGC + adiabatic loading 938 2π × 320 10

PGC + adiabatic loading 1466 2π × 400 16
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Fig. 4. Measurement of vacuum Rabi splitting. (a) Reflection spectrum of the
atom–cavity system. Scatter is the experimental data. The black line is the
Lorentz fitting of the cavity reflection spectrum and the red line is the vacuum
Rabi splitting fitting. (b) Transmission spectrum of the atom–cavity system;
the column is the experimental data. (c) The optimized reflection spectrum
of the optimization with PGC in different 850 nm laser powers.
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where ωc is the optical cavity resonant frequency, and ω 0
a is the

atomic resonant frequency. As shown in Fig. 6, there is a fre-
quency shift of 2π × 47MHz corresponding to the effective
atom number N 0

eff = 14, which is nearly equal to the
Neff = 16. The obviously different phenomenon shows that
the strong coupling system can be used to detect the atomic
internal state.

4. Conclusion

In this paper, we load atoms into an optical fiber microcavity by
a programmable movable optical dipole trap and attain the
atom–cavity strong coupling regime, benefiting from the good
coupling constant g0 and the effective atomic transport. The
VRS is optimized to 2π× 800MHz and represents that the effec-
tive atom number Neff is 16 and the collective cooperativity CN

is 1466 with PGC and adiabatic loading, which means a good
strong coupling. The appealing results show that the atom–
cavity system can be used for cavity-enhancing molecular for-
mation and support cold molecule cavity QED experiments,
such as the strong coupling between cold molecules and optical
cavities[28–32,53–56].
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