• Acta Optica Sinica
  • Vol. 39, Issue 10, 1017001 (2019)
Ziye Fang and Jingjing Yu*
Author Affiliations
  • School of Physics and Information Technology, Shaanxi Normal University, Xi′an, Shaanxi 710119, China
  • show less
    DOI: 10.3788/AOS201939.1017001 Cite this Article Set citation alerts
    Ziye Fang, Jingjing Yu. Simulation of Bioluminescence Tomography Based on Improved Half Threshold Algorithm[J]. Acta Optica Sinica, 2019, 39(10): 1017001 Copy Citation Text show less
    References

    [1] Qin C H, Feng J C, Zhu S P et al. Recent advances in bioluminescence tomography: methodology and system as well as application[J]. Laser & Photonics Reviews, 8, 94-114(2014). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201280011/references

    [2] Yu J J, Zhang B, Iordachita I I et al. Systematic study of target localization for bioluminescence tomography guided radiation therapy[J]. Medical Physics, 43, 2619-2629(2016). http://onlinelibrary.wiley.com/doi/10.1118/1.4947481/pdf

    [3] Yu J J, Tian J, Wang H Y et al. Bioluminescence tomography based on iterative support detection[J]. Acta Optica Sinica, 37, 0711004(2017).

    [4] Cong W X, Wang G, Kumar D et al. Practical reconstruction method for bioluminescence tomography[J]. Optics Express, 13, 6756-6771(2005). http://europepmc.org/abstract/MED/19498692

    [5] Yu J J, Liu F, He X W et al. Adaptive parameter selection for Tikhonov regularization in Bioluminescence tomography. [C]∥2010 3rd International Conference on Biomedical Engineering and Informatics, October 16-18, 2010, Yantai, China. New York: IEEE, 86-90(2010).

    [6] Yu J J, Liu F, Wu J et al. Fast source reconstruction for bioluminescence tomography based on sparse regularization[J]. IEEE Transactions on Biomedical Engineering, 57, 2583-2586(2010). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_PM20639167

    [7] He X W, Liang J M, Wang X R et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 18, 24825-24841(2010). http://www.ncbi.nlm.nih.gov/pubmed/21164828

    [8] Jin C, Guo H B, Hou Y Q et al. Bioluminescence tomography reconstruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation[J]. Acta Optica Sinica, 34, 0617001(2014).

    [9] Chen X L, Yang D F, Zhang Q T et al. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography[J]. Journal of Applied Physics, 115, 184702(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6815924

    [10] Xu Z B, Guo H L, Wang Y et al. Representative of L1/2 regularization among Lq (0. Acta Automatica Sinica, 38, 1225-1228(2012). http://www.cqvip.com/QK/90250X/201207/42587327.html

    [11] Yu J J, Li Q Y, Wang H Y. Source reconstruction for bioluminescence tomography via L1/2 regularization[J]. Journal of Innovative Optical Health Sciences, 11, 1750014(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1809180000024z6C9F

    [12] Daubechies I. DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery[J]. Communications on Pure and Applied Mathematics, 63, 1-38(2010).

    [13] Xu Z B, Chang X Y, Xu F M et al. L1/2 regularization: a thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 23, 1013-1027(2012). http://www.ncbi.nlm.nih.gov/pubmed/24807129

    [14] Zhu D W, Zhao Y, Baikejiang R et al. Comparison of regularization methods in fluorescence molecular tomography[J]. Photonics, 1, 95-109(2014). http://www.ingentaconnect.com/content/doaj/23046732/2014/00000001/00000002/art00003

    [15] Chen Y K, Chen K L, Shi P D et al. Irregular seismic data reconstruction using a percentile-half-thresholding algorithm[J]. Journal of Geophysics and Engineering, 11, 065001(2014). http://adsabs.harvard.edu/abs/2014JGE....11f5001C

    [16] Liang Y, Liu C, Luan X Z et al. Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification[J]. BMC Bioinformatics, 14, 198(2013). http://link.springer.com/article/10.1186/1471-2105-14-198

    [17] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 55, 2230-2249(2009). http://dl.acm.org/citation.cfm?id=1669509&preflayout=tabs

    [18] Ma Y, Zhang Z J, Chen W et al. An micro-motion target imaging algorithm based on compressed sensing theory[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 35, 170-174(2015).

    [19] Zhu Y W, Zhao Y J, Sun B. A modified sparsity adaptive matching pursuit algorithm[J]. Signal Processing, 28, 80-86(2012).

    [20] He X L, Yu J J, Wang X D et al. Half thresholding pursuit algorithm for fluorescence molecular tomography[J]. IEEE Transactions on Biomedical Engineering, 66, 1468-1476(2019).

    [21] Dogdas B, Stout D, Chatziioannou A F et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine & Biology, 52, 577-587(2007). http://pubmedcentralcanada.ca/pmcc/articles/PMC3006167/

    Ziye Fang, Jingjing Yu. Simulation of Bioluminescence Tomography Based on Improved Half Threshold Algorithm[J]. Acta Optica Sinica, 2019, 39(10): 1017001
    Download Citation