[1] X Xiao, F Z Kong, J H Liu. Monitoring video fire detection algorithm based on dynamic characteristics and static characteristics. Comput Sci, 46, 284-286,299(2019).
[2] T Çelik, H Demirel. Fire detection in video sequences using a generic color model. Fire Saf J, 44, 147-158(2009).
[3] T Qiu, Y Yan, G Lu. An autoadaptive edge-detection algorithm for flame and fire image processing. IEEE Trans Instrum Meas, 61, 1486-1493(2012).
[4] J Shao, G X Wang, W Guo. Fire detection based on video dynamic texture. J Image Graph, 18, 647-653(2013).
[5] S Surit, W Chatwiriya. Forest fire smoke detection in video based on digital image processing approach with static and dynamic characteristic analysis, 35-39(2011). https://doi.org/10.1109/CNSI.2011.47
[6] Q J Zhang, J L Xu, L Xu et al. Deep convolutional neural networks for forest fire detection, 568-575(2016). https://doi.org/10.2991/ifmeita-16.2016.105
[7] A J Dunnings, T P Breckon. Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection, 1558-1562(2018). https://doi.org/10.1109/ICIP.2018.8451657
[8] J Sharma, O C Granmo, M Goodwin et al. Deep convolutional neural networks for fire detection in images, 183-193(2017). https://doi.org/10.1007/978-3-319-65172-9_16
[9] M A Akhloufi, R B Tokime, H Elassady. Wildland fires detection and segmentation using deep learning. Proc SPIE, 10649, 106490B(2018).
[10] J F Ren, W H Xiong, Z H Wu et al. Fire detection and identification based on improved YOLOv3. Comput Syst Appl, 28, 171-176(2019).
[11] W Z Miao, Z N Lu, J L Wang et al. Fire detection research based on vision. For Eng, 38, 86-92,100(2022).
[12] K Liu, Y X Wei, J G Xu et al. Design of forest fire identification algorithm based on computer vision. For Eng, 34, 89-95(2018).
[13] J Pi, Y H Liu, J H Li. Research on lightweight forest fire detection algorithm based on YOLOv5s. J Graph, 44, 26-32(2023).
[14] Q L Wang, B G Wu, P F Zhu et al. ECA-Net: efficient channel attention for deep convolutional neural networks, 11534-11542(2020). https://doi.org/10.1109/CVPR42600.2020.01155
[15] T Y Lin, P Dollár, R Girshick et al. Feature pyramid networks for object detection, 2117-2125(2017). https://doi.org/10.1109/CVPR.2017.106
[16] W H Wang, E Z Xie, X G Song et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network, 8440-8449(2019). https://doi.org/10.1109/ICCV.2019.00853
[17] C H Y Yang, Z H Huang, N Y Wang. QueryDet: cascaded sparse query for accelerating high-resolution small object detection, 13668-13677(2022). https://doi.org/10.1109/CVPR52688.2022.01330
[18] Z Liu, J G Li, Z Q Shen et al. Learning efficient convolutional networks through network slimming, 2736-2744(2017). https://doi.org/10.1109/ICCV.2017.298
[19] T Celik, H Ozkaramanli, H Demirel. Fire pixel classification using fuzzy logic and statistical color model, I-1205-I-1208(2007). https://doi.org/10.1109/ICASSP.2007.366130
[20] D Y Zhang, S Z Han, J H Zhao et al. Image based forest fire detection using dynamic characteristics with artificial neural networks, 290-293(2009). https://doi.org/10.1109/JCAI.2009.79
[21] L Zhao, L Q Zhi, C Zhao et al. Fire-YOLO: a small target object detection method for fire inspection. Sustainability, 14, 4930(2022).
[22] S B Li, Q D Yang, P Liu. An efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanism. IEEE Trans Image Proc, 29, 8467-8475(2020).
[23] S Y Wang, J Zhao, N Ta et al. A real-time deep learning forest fire monitoring algorithm based on an improved pruned + KD model. J Real-Time Image Proc, 18, 2319-2329(2021).
[24] Z Ge, S T Liu, F Wang et al. YOLOX: exceeding YOLO series in 2021(2021). https://arxiv.org/abs/2107.08430
[25] G H Yu, Q Y Chang, W Y Lv et al. PP-PicoDet: a better real-time object detector on mobile devices(2021). https://arxiv.org/abs/2111.00902
[26] C Y Wang, A Bochkovskiy, H Y M Liao. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023). https://doi.org/10.1109/CVPR52729.2023.00721
[27] S Y Wang, T Chen, X Y Lv et al. Forest fire detection based on lightweight Yolo, 1560-1565(2021). https://doi.org/10.1109/CCDC52312.2021.9601362
[28] X Long, K P Deng, G Z Wang et al. PP-YOLO: an effective and efficient implementation of object detector(2020). https://arxiv.org/abs/2007.12099
[29] S L Xu, X X Wang, W Y Lv et al. PP-YOLOE: an evolved version of YOLO(2022). https://arxiv.org/abs/2203.16250