• Acta Optica Sinica
  • Vol. 39, Issue 6, 0617001 (2019)
Di Lu1、2, Xiao Wei1、2, Xin Cao1、2、**, Xiaowei He1、2、*, and Yuqing Hou1、2
Author Affiliations
  • 1 School of Information Sciences & Technology, Northwest University, Xi'an, Shaanxi 710127, China;
  • 2 Key Laboratory for Radiomics and Intelligent Sense of Xi'an, Northwest University, Xi'an, Shaanxi 710127, China
  • show less
    DOI: 10.3788/AOS201939.0617001 Cite this Article Set citation alerts
    Di Lu, Xiao Wei, Xin Cao, Xiaowei He, Yuqing Hou. Fast Reconstruction Method for Fluorescence Molecular Tomography Based on Autoencoder[J]. Acta Optica Sinica, 2019, 39(6): 0617001 Copy Citation Text show less
    References

    [1] Hwang J Y, Wachsmann-Hogiu S, Ramanujan V K et al. A multimode optical imaging system for preclinical applications in vivo: technology development, multiscale imaging, and chemotherapy assessment[J]. Molecular Imaging and Biology, 14, 431-442(2012).

         Hwang J Y, Wachsmann-Hogiu S, Ramanujan V K et al. A multimode optical imaging system for preclinical applications in vivo: technology development, multiscale imaging, and chemotherapy assessment[J]. Molecular Imaging and Biology, 14, 431-442(2012).

         Hwang J Y, Wachsmann-Hogiu S, Ramanujan V K et al. A multimode optical imaging system for preclinical applications in vivo: technology development, multiscale imaging, and chemotherapy assessment[J]. Molecular Imaging and Biology, 14, 431-442(2012).

    [2] Roy R, Thompson A B, Godavarty A et al. Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry[J]. IEEE Transactions on Medical Imaging, 24, 137-154(2005).

         Roy R, Thompson A B, Godavarty A et al. Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry[J]. IEEE Transactions on Medical Imaging, 24, 137-154(2005).

         Roy R, Thompson A B, Godavarty A et al. Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry[J]. IEEE Transactions on Medical Imaging, 24, 137-154(2005).

    [3] Yi H J. Regularization based reconstruction algorithms for fluorescence molecular tomography Xi'an:[D]. Xidian University(2013).

         Yi H J. Regularization based reconstruction algorithms for fluorescence molecular tomography Xi'an:[D]. Xidian University(2013).

         Yi H J. Regularization based reconstruction algorithms for fluorescence molecular tomography Xi'an:[D]. Xidian University(2013).

    [4] Shang W T, Tian J. Progress of nanoprobes for cancer diagnosis and treatment[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 37, 726-729(2017).

         Shang W T, Tian J. Progress of nanoprobes for cancer diagnosis and treatment[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 37, 726-729(2017).

         Shang W T, Tian J. Progress of nanoprobes for cancer diagnosis and treatment[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 37, 726-729(2017).

    [5] Leblond F, Davis S C, Valdés P A et al. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications[J]. Journal of Photochemistry and Photobiology B: Biology, 98, 77-94(2010).

         Leblond F, Davis S C, Valdés P A et al. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications[J]. Journal of Photochemistry and Photobiology B: Biology, 98, 77-94(2010).

         Leblond F, Davis S C, Valdés P A et al. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications[J]. Journal of Photochemistry and Photobiology B: Biology, 98, 77-94(2010).

    [6] Hou Y Q, Jin M Y, He X W et al. Fluorescence molecular tomography using a stochastic variant of alternating direction method of multipliers[J]. Acta Optica Sinica, 37, 0717001(2017).

         Hou Y Q, Jin M Y, He X W et al. Fluorescence molecular tomography using a stochastic variant of alternating direction method of multipliers[J]. Acta Optica Sinica, 37, 0717001(2017).

         Hou Y Q, Jin M Y, He X W et al. Fluorescence molecular tomography using a stochastic variant of alternating direction method of multipliers[J]. Acta Optica Sinica, 37, 0717001(2017).

    [7] Dong F, Hou Y Q, Yu J J et al. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 53, 011701(2016).

         Dong F, Hou Y Q, Yu J J et al. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 53, 011701(2016).

         Dong F, Hou Y Q, Yu J J et al. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 53, 011701(2016).

    [8] Wang Z M, Panasyuk G Y, Markel V A et al. Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets[J]. Optics Letters, 30, 3338-3340(2005).

         Wang Z M, Panasyuk G Y, Markel V A et al. Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets[J]. Optics Letters, 30, 3338-3340(2005).

         Wang Z M, Panasyuk G Y, Markel V A et al. Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets[J]. Optics Letters, 30, 3338-3340(2005).

    [9] Zou W, Wang J J, Feng D D et al. Fluorescence molecular tomographic image reconstruction based on reduced measurement data[J]. Optical Engineering, 54, 073114(2015).

         Zou W, Wang J J, Feng D D et al. Fluorescence molecular tomographic image reconstruction based on reduced measurement data[J]. Optical Engineering, 54, 073114(2015).

         Zou W, Wang J J, Feng D D et al. Fluorescence molecular tomographic image reconstruction based on reduced measurement data[J]. Optical Engineering, 54, 073114(2015).

    [10] Partridge M, Jabri M. Robust principal component analysis. [C]∥Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No. 00TH8501), December 11-13, 2000, Sydney, NSW, Australia. New York: IEEE, 289-298(2000).

         Partridge M, Jabri M. Robust principal component analysis. [C]∥Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No. 00TH8501), December 11-13, 2000, Sydney, NSW, Australia. New York: IEEE, 289-298(2000).

         Partridge M, Jabri M. Robust principal component analysis. [C]∥Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No. 00TH8501), December 11-13, 2000, Sydney, NSW, Australia. New York: IEEE, 289-298(2000).

    [11] Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 26, 527-532(2005).

         Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 26, 527-532(2005).

         Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 26, 527-532(2005).

    [12] Lai P L, Fyfe C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems, 10, 365-377(2000).

         Lai P L, Fyfe C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems, 10, 365-377(2000).

         Lai P L, Fyfe C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems, 10, 365-377(2000).

    [13] Zhang X, Yi H J, Hou Y Q et al. Fast reconstruction in fluorescence molecular tomography based on locality preserving projections[J]. Acta Optica Sinica, 36, 0717001(2016).

         Zhang X, Yi H J, Hou Y Q et al. Fast reconstruction in fluorescence molecular tomography based on locality preserving projections[J]. Acta Optica Sinica, 36, 0717001(2016).

         Zhang X, Yi H J, Hou Y Q et al. Fast reconstruction in fluorescence molecular tomography based on locality preserving projections[J]. Acta Optica Sinica, 36, 0717001(2016).

    [14] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 313, 504-507(2006).

         Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 313, 504-507(2006).

         Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 313, 504-507(2006).

    [15] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

         LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

         LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [16] Tang J, Sun J, Wang C et al. Social influence analysis in large-scale networks. [C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 1, 2009, Paris, France. New York: ACM, 807-816(2009).

         Tang J, Sun J, Wang C et al. Social influence analysis in large-scale networks. [C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 1, 2009, Paris, France. New York: ACM, 807-816(2009).

         Tang J, Sun J, Wang C et al. Social influence analysis in large-scale networks. [C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 1, 2009, Paris, France. New York: ACM, 807-816(2009).

    [17] Chu C T, Sang K K, Lin Y A et al[M]. Map-reduce for machine learning on multicore, 281-288(2007).

         Chu C T, Sang K K, Lin Y A et al[M]. Map-reduce for machine learning on multicore, 281-288(2007).

         Chu C T, Sang K K, Lin Y A et al[M]. Map-reduce for machine learning on multicore, 281-288(2007).

    [18] Alham N K, Li M Z, Liu Y et al. A MapReduce-based distributed SVM algorithm for automatic image annotation[J]. Computers & Mathematics with Applications, 62, 2801-2811(2011).

         Alham N K, Li M Z, Liu Y et al. A MapReduce-based distributed SVM algorithm for automatic image annotation[J]. Computers & Mathematics with Applications, 62, 2801-2811(2011).

         Alham N K, Li M Z, Liu Y et al. A MapReduce-based distributed SVM algorithm for automatic image annotation[J]. Computers & Mathematics with Applications, 62, 2801-2811(2011).

    [19] Shi Z G, Yang Z Y. Research on the measurement of information loss in the dimension reduction of deep learning[J]. Journal of Chinese Computer Systems, 38, 1590-1594(2017).

         Shi Z G, Yang Z Y. Research on the measurement of information loss in the dimension reduction of deep learning[J]. Journal of Chinese Computer Systems, 38, 1590-1594(2017).

         Shi Z G, Yang Z Y. Research on the measurement of information loss in the dimension reduction of deep learning[J]. Journal of Chinese Computer Systems, 38, 1590-1594(2017).

    [20] Wang Y S, Yao H X, Zhao S C. Auto-encoder based dimensionality reduction[J]. Neurocomputing, 184, 232-242(2016).

         Wang Y S, Yao H X, Zhao S C. Auto-encoder based dimensionality reduction[J]. Neurocomputing, 184, 232-242(2016).

         Wang Y S, Yao H X, Zhao S C. Auto-encoder based dimensionality reduction[J]. Neurocomputing, 184, 232-242(2016).

    [21] Wang Y, Yao H, Zhao S et al. Dimensionality reduction strategy based on auto-encoder. [C]∥Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, August 19-21, 2015, Zhangjiajie, Hunan, China. New York: ACM, 63(2015).

         Wang Y, Yao H, Zhao S et al. Dimensionality reduction strategy based on auto-encoder. [C]∥Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, August 19-21, 2015, Zhangjiajie, Hunan, China. New York: ACM, 63(2015).

         Wang Y, Yao H, Zhao S et al. Dimensionality reduction strategy based on auto-encoder. [C]∥Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, August 19-21, 2015, Zhangjiajie, Hunan, China. New York: ACM, 63(2015).

    [22] Masci J, Meier U, Cireşan D et al. Stacked convolutional auto-encoders for hierarchical feature extraction[M]. ∥Honkela T, Duch W, Girolami M, et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 6791, 52-59(2011).

         Masci J, Meier U, Cireşan D et al. Stacked convolutional auto-encoders for hierarchical feature extraction[M]. ∥Honkela T, Duch W, Girolami M, et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 6791, 52-59(2011).

         Masci J, Meier U, Cireşan D et al. Stacked convolutional auto-encoders for hierarchical feature extraction[M]. ∥Honkela T, Duch W, Girolami M, et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 6791, 52-59(2011).

    [23] Wang Y S, Yao H X, Sun X S et al. Representation ability research of auto-encoders in deep learning[J]. Computer Science, 42, 56-60, 65(2015).

         Wang Y S, Yao H X, Sun X S et al. Representation ability research of auto-encoders in deep learning[J]. Computer Science, 42, 56-60, 65(2015).

         Wang Y S, Yao H X, Sun X S et al. Representation ability research of auto-encoders in deep learning[J]. Computer Science, 42, 56-60, 65(2015).

    [24] He X W, Liang J M, Wang X R et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 18, 24825-24841(2010).

         He X W, Liang J M, Wang X R et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 18, 24825-24841(2010).

         He X W, Liang J M, Wang X R et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 18, 24825-24841(2010).

    [25] Cong A X, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 13, 9847-9854(2005).

         Cong A X, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 13, 9847-9854(2005).

         Cong A X, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 13, 9847-9854(2005).

    [26] Fan S F, Li J, Zhao Y Q. Principle, technique, and biomedical applications of spectral imaging[J]. Life Science Instruments, 2, 24-27(2004).

         Fan S F, Li J, Zhao Y Q. Principle, technique, and biomedical applications of spectral imaging[J]. Life Science Instruments, 2, 24-27(2004).

         Fan S F, Li J, Zhao Y Q. Principle, technique, and biomedical applications of spectral imaging[J]. Life Science Instruments, 2, 24-27(2004).

    [27] Yao J J, Hu G, Yue S H et al. A 3D-surface torso reconstruction method used in fluorescence molecular tomography of small animals[J]. Chinese Journal of Biomedical Engineering, 27, 360-365(2008).

         Yao J J, Hu G, Yue S H et al. A 3D-surface torso reconstruction method used in fluorescence molecular tomography of small animals[J]. Chinese Journal of Biomedical Engineering, 27, 360-365(2008).

         Yao J J, Hu G, Yue S H et al. A 3D-surface torso reconstruction method used in fluorescence molecular tomography of small animals[J]. Chinese Journal of Biomedical Engineering, 27, 360-365(2008).

    [28] Song X L, Wang D F, Chen N G et al. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm[J]. Optics Express, 15, 18300-18317(2007).

         Song X L, Wang D F, Chen N G et al. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm[J]. Optics Express, 15, 18300-18317(2007).

         Song X L, Wang D F, Chen N G et al. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm[J]. Optics Express, 15, 18300-18317(2007).

    [29] Schweiger M, Arridge S R, Hiraoka M et al. The finite element method for the propagation of light in scattering media: boundary and source conditions[J]. Medical Physics, 22, 1779-1792(1995).

         Schweiger M, Arridge S R, Hiraoka M et al. The finite element method for the propagation of light in scattering media: boundary and source conditions[J]. Medical Physics, 22, 1779-1792(1995).

         Schweiger M, Arridge S R, Hiraoka M et al. The finite element method for the propagation of light in scattering media: boundary and source conditions[J]. Medical Physics, 22, 1779-1792(1995).

    [30] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 14, 707-710(2007).

         Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 14, 707-710(2007).

         Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 14, 707-710(2007).

    [31] Vincent P, Larocheh H, Lajoie I et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 11, 3371-3408(2010).

         Vincent P, Larocheh H, Lajoie I et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 11, 3371-3408(2010).

         Vincent P, Larocheh H, Lajoie I et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 11, 3371-3408(2010).

    [32] Baldi P. Autoencoders, unsupervised learning and deep architectures. [C]∥Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, June 28-July 2, 2011, Bellevue, Washington, USA. Washington: JMLR. org, 27, 37-50(2011).

         Baldi P. Autoencoders, unsupervised learning and deep architectures. [C]∥Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, June 28-July 2, 2011, Bellevue, Washington, USA. Washington: JMLR. org, 27, 37-50(2011).

         Baldi P. Autoencoders, unsupervised learning and deep architectures. [C]∥Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, June 28-July 2, 2011, Bellevue, Washington, USA. Washington: JMLR. org, 27, 37-50(2011).

    [33] Deng J F, Zhang X L. Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 36, 697-702(2016).

         Deng J F, Zhang X L. Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 36, 697-702(2016).

         Deng J F, Zhang X L. Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 36, 697-702(2016).

    [34] Qu J L, Du C F, Di Y Z et al[J]. Research and prospect of deep auto-encoders Computer and Modernization, 2014, 128-134.

         Qu J L, Du C F, Di Y Z et al[J]. Research and prospect of deep auto-encoders Computer and Modernization, 2014, 128-134.

         Qu J L, Du C F, Di Y Z et al[J]. Research and prospect of deep auto-encoders Computer and Modernization, 2014, 128-134.

    [35] Sun Z J, Xue L, Xu Y M et al. Overview of deep learning[J]. Application Research of Computers, 29, 2806-2810(2012).

         Sun Z J, Xue L, Xu Y M et al. Overview of deep learning[J]. Application Research of Computers, 29, 2806-2810(2012).

         Sun Z J, Xue L, Xu Y M et al. Overview of deep learning[J]. Application Research of Computers, 29, 2806-2810(2012).

    Di Lu, Xiao Wei, Xin Cao, Xiaowei He, Yuqing Hou. Fast Reconstruction Method for Fluorescence Molecular Tomography Based on Autoencoder[J]. Acta Optica Sinica, 2019, 39(6): 0617001
    Download Citation