• Journal of Inorganic Materials
  • Vol. 36, Issue 7, 673 (2021)
Fei PENG, Yonggang JIANG*, Jian FENG*, Huafei CAI, Junzong FENG, and Liangjun LI
Author Affiliations
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.15541/jim20200404 Cite this Article
    Fei PENG, Yonggang JIANG, Jian FENG, Huafei CAI, Junzong FENG, Liangjun LI. Research Progress on Alumina Aerogel Composites for High-temperature Thermal Insulation[J]. Journal of Inorganic Materials, 2021, 36(7): 673 Copy Citation Text show less
    References

    [1] O UYANNA, H NAJAFI. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects. Acta Astronautica, 176, 341-356(2020).

    [2] M KOEBEL M, A RIGACCI, P ACHARD. Aerogels Handbook, 607-632(2010).

    [3] H CAI, Y JIANG, J FENG et al. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Materials & Design, 191, 108640(2020).

    [4] F WANG, L DOU, J DAI et al. In situ synjournal of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angewandte Chemie International Edition, 59, 8285-8292(2020).

    [5] F POCO J, J H S JR, L W HRUBESH. Synthesis of high porosity, monolithic alumina aerogels. Journal of Non-Crystalline Solids, 285, 57-63(2001).

    [7] G ZU, J SHEN, L ZOU et al. Nanoengineering super heat-resistant, strong alumina aeroegels. Chemistry of Materials, 25, 4757-4764(2013).

    [8] G ZU, J SHEN, L ZOU et al. Highly thermally stable zirconia/ silica composite aerogels prepared by supercritical deposition. Microporous and Mesoporous Materials, 238, 90-96(2017).

    [9] L SU, H WANG, M NIU et al. Ultralight, recoverable, and high temperature-resistant SiC nanowire aerogel. ACS Nano, 12, 3103-3111(2018).

    [10] X XU, Q ZHANG, M HAO et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science, 363, 723-727(2019).

    [12] H CAI, Y JIANG, J FENG et al. Nanostructure evolution of silica aerogels under rapid heating from 600 ℃ to 1300 ℃ via in-situ TEM observation. Ceramics International, 46, 12489-12498(2020).

    [13] F BAUMANN T, E GASH A, C CHINN S et al. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chemistry of Materials, 17, 395-401(2005).

    [14] G ZU, J SHEN, X WEI et al. Preparation and characterization of monolithic alumina aerogels. Journal of Non-Crystalline Solids, 357, 2903-2906(2011).

    [15] W WANG, Z ZHANG, G ZU et al. Trimethylethoxysilane- modified super heat-resistant alumina aerogels for high-temperature thermal insulation and adsorption applications. RSC Advances, 4, 54864-54871(2014).

    [18] P PAKHARUKOVA V, S SHALYGIN A, Y GERASIMOV E et al. Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment. Journal of Solid State Chemistry, 233, 294-302(2016).

    [19] T BARARPOUR S, D KARAMI, N MAHINPEY. Investigation of the effect of alumina-aerogel support on the CO2 capture performance of K2CO3. Fuel, 242, 124-132(2019).

    [20] I HURWITZ F, M GALLAGHER, C OLIN T et al. Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance. International Journal of Applied Glass Science, 5, 276-286(2014).

    [21] E YOROV K, D YAPRYNTSEV A, E BARANCHIKOV A et al. Luminescent alumina-based aerogels modified with tris(8-hydroxyquinolinato)aluminum. Journal of Sol-Gel Science and Technology, 86, 400-409(2018).

    [22] S WEN, H REN, J ZHU et al. Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance. Journal of Porous Materials, 26, 1027-1034(2018).

    [23] R ARAVIND P, P MUKUNDAN, K PILLAI P et al. Mesoporous silica-alumina aerogels with high thermal pore stability through hybrid Sol-Gel route followed by subcritical drying. Microporous and Mesoporous Materials, 96, 14-20(2006).

    [24] G HAYASE, K NONOMURA, G HASEGAWA et al. Ultralow- density, transparent, superamphiphobic boehmite nanofiber aerogels and their alumina derivatives. Chemistry of Materials, 27, 3-5(2015).

    [26] X WU, G SHAO, X SHEN et al. Novel Al2O3-SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non- alkoxide Sol-Gel method. RSC Advances, 6, 5611-5620(2016).

    [27] X HOU, R ZHANG, D FANG. Novel whisker-reinforced Al2O3- SiO2 aerogel composites with ultra-low thermal conductivity. Ceramics International, 43, 9547-9551(2017).

    [28] J YANG, Q WANG, T WANG et al. Facile one-step precursor- to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures. Journal of Porous Materials, 24, 889-897(2017).

    [29] D KARAMI, N MAHINPEY. Utilization of alumina aerogel as high surface area support for the fabrication of oxygen carriers in the chemical looping combustion process. Energy & Fuels, 33, 5408-5414(2019).

    [30] Y MIZUSHIMA, M HORI. Preparation of heat-resistant alumina aerogels. Journal of Materials Research, 8, 2993-2999(1993).

    [31] T OSAKI, K NAGASHIMA, K WATARI et al. Silica-doped alumina cryogels with high thermal stability. Journal of Non- Crystalline Solids, 353, 2436-2442(2007).

    [32] X JI, Q ZHOU, G QIU et al. Synthesis of an alumina enriched Al2O3-SiO2 aerogel: reinforcement and ambient pressure drying. Journal of Non-Crystalline Solids, 471, 160-168(2017).

    [33] H YU, Y JIANG, Y LU et al. Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying. Journal of Non-Crystalline Solids, 505, 79-86(2019).

    [34] T HORIUCHI, T OSAKI, T SUGIYAMA et al. Maintenance of large surface area of alumina heated at elevated temperatures above 1300 ℃ by preparing silica-containing pseudoboehmite aerogel. Journal of Non-Crystalline Solids, 291, 187-198(2001).

    [35] I HURWITZ F, H GUO, B ROGERS R et al. Influence of Ti addition on boehmite-derived aluminum silicate aerogels: structure and propeties. Journal of Sol-Gel Science and Technology, 64, 367-374(2012).

    [36] X WU, G SHAO, S CUI et al. Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceramics International, 42, 874-882(2016).

    [37] R ZHANG, C YE, B WANG. Novel Al2O3-SiO2 aerogel/porous zirconia composite with ultralow thermal conductivity. Journal of Porous Materials(2017).

    [39] F PENG, Y JIANG, J FENG et al. A facile method to fabricate monolithic alumina-silica aerogels with high surface areas and good mechanical properties. Journal of the European Ceramic Society, 40, 2480-2488(2020).

    [40] Y TOKUBOME, K NAKANISHI, T HANADA. Effect of La addition on thermal microstructural evolution of macroporous alumina monolith prepared from ionic precursors. Journal of the Ceramic Society of Japan, 117, 351-355(2009).

    [41] J YANG, Q WANG, T WANG et al. Rapid preparation process, structure and thermal stability of lanthanum doped alumina aerogels with a high specific surface area. RSC Advances, 6, 26271-26279(2016).

    [42] X SUN, Y WU, Y WANG et al. Investigation of the effect of lanthanum oxide on the thermal stability of alumina aerogel. Journal of Porous Materials, 26, 327-333(2018).

    [43] N AL-YASSIR, L V MAO R. Thermal stability of alumina aerogel doped with yttrium oxide, use as a catalyst support for the thermocatalytic cracking (TCC) process: an investigation of its textural and structural properties. Applied Catalysis, 317, 275-283(2007).

    [46] Z SHI, H GAO, X WANG et al. One-step synthesis of monolithic micro-nano yttria stabilized ZrO2-Al2O3 composite aerogel. Microporous and Mesoporous Materials, 259, 26-32(2018).

    [47] G ZU, J SHEN, W WANG et al. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalyst. Chemistry of Materials, 26, 5761-5772(2014).

    [48] Y MIZUSHIMA, M HORI. Preparation and properties of alumina-organic compound aerogels. Journal of Non-Crystalline Solids, 170, 215-222(1994).

    [49] V YAKOVLEVA I, M VOLODINA A, I ZAIKOVSKIIA V et al. Stabilizing effect of the carbon shell on phase transformation of the nanocrystalline alumina particles. Ceramics International, 44, 4801-4806(2018).

    [50] Y MIZUSHIMA, M HORI. Preparation of an alumina aerogel with SiC whisker inclusion. Journal of the European Ceramic Society, 14, 117-121(1994).

    [54] W ZOU, X WANG, Y WU et al. Opacifier embedded and fiber reinforced alumina-based aerogel composites for ultra-high temperature thermal insulation. Ceramics International, 45, 644-650(2019).

    [55] Y YU, K PENG, J FANG et al. Mechanical and thermal conductive properties of fiber-reinforced silica-alumina aerogels. Applied Ceramic Technology, 15, 1138-1145(2018).

    [58] Z ZHU, F WANG, J YAO et al. High-temperature insulation property of opacifier-doped Al2O3-SiO2 aerogel/mullite fiber composites. Journal of Inorganic Materials, 33, 970-975(2018).

    [59] H TANG G, C BI, Y ZHAO et al. Thermal transport in nano-porous insulation of aerogel: factors, models and outlook. Energy, 90, 701-721(2015).

    [60] C LEE S, R CUNNINGTON G. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. Journal of Thermophysics and Heat Transfer, 14, 121-136(2000).

    [61] J ZHAO, Y DUAN, X WANG et al. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. International Journal of Heat and Mass Transfer, 55, 5196-5204(2012).

    [62] H ZHANG, W FANG, Z LI et al. The influence of gaseous heat conduction to the effective thermal conductivity of nano-porous materials. International Communications in Heat and Mass Transfer, 68, 158-161(2015).

    [64] G YANG, Y JIANG, J FENG et al. Synthesis of fibre reinforced Al2O3-SiO2 aerogel composite with high density uniformity via a facile high-pressure impregnation approach. Processing and Application of Ceramics, 11, 185-190(2017).

    [65] Y WANG K, X LIU R, L ZHANG et al. Preparation and thermal stability of quartz fiber reinforced silicon doped aluminum aerogel composites. IOP Conf. Series: Materials Science and Engineering, 678, 012076(2019).

    [66] Y ZHONG, J ZHANG, X WU et al. Carbon-fiber felt reinforced carbon/alumina aerogel composite fabricated with high strength and low thermal conductivity. Journal of Sol-Gel Science and Technology, 84, 129-134(2017).

    [67] H LI, Y CHEN, P WANG et al. Porous carbon-bonded carbon fiber composites impregnated with SiO2-Al2O3 aerogel with enhanced thermal insulation and mechanical properties. Ceramics International, 44, 3484-3487(2018).

    [69] L XU, Y JIANG, J FENG et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceramics International, 41, 437-442(2015).

    [70] M GAO, B LIU, P ZHAO et al. Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator. Journal of Sol-Gel Science and Technology, 91, 514-522(2019).

    [73] W ZOU, X WANG, Y WU et al. Highly thermally stable alumina- based aerogels modified by partially hydrolyzed aluminum tri-sec-butoxide. Journal of Sol-Gel Science and Technology, 84, 507-514(2017).

    Fei PENG, Yonggang JIANG, Jian FENG, Huafei CAI, Junzong FENG, Liangjun LI. Research Progress on Alumina Aerogel Composites for High-temperature Thermal Insulation[J]. Journal of Inorganic Materials, 2021, 36(7): 673
    Download Citation