• Journal of Inorganic Materials
  • Vol. 38, Issue 12, 1475 (2023)
Haidong WANG1,2,3, Yan WANG1,3, Zhaojie ZHU1,3, Jianfu LI1,3..., Gandham LAKSHMINARAYANA4 and Chaoyang TU1,3,*|Show fewer author(s)
Author Affiliations
  • 11. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • 22. University of Chinese Academy of Sciences, Beijing 100049, China
  • 33. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
  • 44. Intelligent Construction Automation Center, Kyungpook National University, Daegu 41566, Republic of Korea
  • show less
    DOI: 10.15541/jim20230059 Cite this Article
    Haidong WANG, Yan WANG, Zhaojie ZHU, Jianfu LI, Gandham LAKSHMINARAYANA, Chaoyang TU. Crystal Growth and Structural, Optical, and Visible Fluorescence Traits of Dy3+-doped SrGdGa3O7 Crystal [J]. Journal of Inorganic Materials, 2023, 38(12): 1475 Copy Citation Text show less
    References

    [1] H I LEE, Y Y LIM, B J KIM et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatologic Surgery, 885(2010).

    [2] J Y KIM, H S PARK, S Y KIM. Short-term efficacy of subthreshold micropulse yellow laser (577-nm) photocoagulation for chronic central serous chorioretinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2129(2015).

    [3] S SINHA, C LANGROCK, M J DIGONNET et al. Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator. Optics Letters, 347(2006).

    [4] Y F CHEN, S W TSAI. Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing. Optics Letters, 397(2002).

    [5] M VILERA, M CHRISTENSEN, A K HANSEN et al. 2.7 W diffraction-limited yellow lasers by efficient frequency doubling of high-brightness tapered diode lasers. Optics Communications(2019).

    [6] J XU, X D XU, W T HOU et al. Research progress of rare-earth doped laser crystals in visible region. Journal of Inorganic Materials, 573(2019).

    [7] S R BOWMAN, S O’CONNOR, N J CONDON. Diode pumped yellow dysprosium lasers. Optics Express, 12906(2012).

    [8] G BOLOGNESI, D PARISI, D CALONICO et al. Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4. Optical Letter, 6628(2014).

    [9] Q JU, H SHEN, W M YAO et al. Laser diode pumped Dy: YAG yellow laser. Chinese Journal of Lasers, 0401004(2017).

    [10] J X YANG, W LI, Y WANG et al. Spectroscopic and yellow Laser features of Dy3+: Y3Al5O12 single crystals. Journal of Inorganic Materials, 350(2023).

    [11] X q GAO, G y FANG, Y WANG et al. Visible and mid-infrared spectral performances of Dy3+: CaF2 and Dy3+/Y3+: CaF2 crystals. Journal of Alloys and Compounds(2021).

    [12] G Y FANG, Y WANG, Z Y YOU et al. Crystal growth, spectral properties and energy transfer mechanisms of Sr3Gd(BO3)3:Dy3+/RE3+(RE=Tb, Eu) crystals. Chinese Journal of Luminescence, 1721(2022).

    [13] S W LONG, D C MA, Y Z ZHU et al. Temperature dependence of white light emission and energy transfer in Dy3+ and Tm3+ co-doped LiNbO3 single crystals. Journal of Luminescence(2017).

    [14] Y Y ZHANG, X YIN, H H YU et al. Growth and piezoelectric properties of melilite ABC3O7crystals. Crystal Growth & Design, 622(2011).

    [15] H P XIA, J H FENG, Y X JI et al. 2.7 μm emission properties of Er3+/Yb3+/Eu3+: SrGdGa3O7 and Er3+/Yb3+/Ho3+: SrGdGa3O7 crystals. Journal of Quantitative Spectroscopy and Radiative Transfer(2016).

    [16] Y WANG, C T SUN, C Y TU et al. Melilite-type oxide SrGdGa3O7: bulk crystal growth and theoretical studies upon both chemical bonding theory of single crystal growth and DFT methods. Crystal Growth & Design, 1598(2018).

    [17] Y Y ZHANG, H J ZHANG, H H YU et al. Synthesis, growth, and characterization of Nd-doped SrGdGa3O7 crystal. Journal of Applied Physics, 063534(2010).

    [18] H P XIA, J H FENG, Y WANG et al. Evaluation of spectroscopic properties of Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal for use in mid-infrared lasers. Science Reports(2015).

    [19] C KRÄNKEL, D-T MARZAHL, F MOGLIA et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Reviews, 548(2016).

    [20] Y L YANG, L H ZHANG, S M LI et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal. Journal of Luminescence(2019).

    [21] H CHEN, P LOISEAU, G AKA. Optical properties of Dy3+-doped CaYAlO4 crystal. Journal of Luminescence(2018).

    [22] X D XU, Z W HU, R J LI et al. Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers. Optical Materials(2017).

    [23] Y X PAN, S D ZHOU, D Z LI et al. Growth and optical properties of Dy:Y3Al5O12 crystal. Physica B: Condensed Matter(2018).

    [24] G S OFELT. Intensities of crystal spectra of rare-earth ions. The Journal of Chemical Physics, 511(1962).

    [25] B R JUDD. Optical absorption intensities of rare-earth ions. Physical Review, 750(1962).

    [26] Z L SHI, Q LI, Y Y XUE et al. Spectroscopic characterizations of Dy: PbWO4 crystal. Journal of Luminescence(2021).

    [27] X T CHEN, Y S HUANG, F F YUAN et al. A novel yellow laser candidate: Dy3+ doped Ca3NbGa3Si2O14 crystal. Journal of Crystal Growth(2021).

    [28] T H JIANG, Y J CHEN, X H GONG et al. Spectroscopic properties of Dy3+-doped Sr3Y(BO3)3 crystal. Optical Materials(2019).

    [29] M ZEKRI, A HERRMANN, R TURKI et al. Experimental and theoretical studies of Dy3+ doped alkaline earth aluminosilicate glasses. Journal of Luminescence(2019).

    [30] BABU K VIJAYA, S COLE. Luminescence properties of Dy3+-doped alkali lead alumino borosilicate glasses. Ceramics International, 9080(2018).

    [31] Y WANG, Z Y YOU, J F LI et al. Optical properties of Dy3+ion in GGG laser crystal. Journal of Physics D: Applied Physics, 075402(2010).

    [32] POONAM, SHIVANI, ANU et al. Judd-Ofelt parameterization and luminescence characterization of Dy3+ doped oxyfluoride lithium zinc borosilicate glasses for lasers and w-LEDs. Journal of Non-Crystalline Solids(2020).

    [33] E RUKMINI, C K JAYASANKAR. Spectroscopic investigations of Dy3+ ions in borosulphate glasses. Physica B: Condensed Matter(1997).

    [34] S BIGOTTA, M TONELLI, E CAVALLI et al. Optical spectra of Dy3+ in KY3F10 and LiLuF4 crystalline fibers. Journal of Luminescence, 13(2010).

    [35] W RYBA-ROMANOWSKI, G DOMINIAK-DZIK, P SOLARZ et al. Transition intensities and excited state relaxation dynamics of Dy3+ in crystals and glasses: a comparative study. Optical Materials, 1547(2009).

    [36] D K SARDAR, W M BRADLEY, R M YOW et al. Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host. Journal of Luminescence, 195(2004).

    [37] B AULL, H JENSSEN. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE Journal of Quantum Electronics, 925(1982).

    [38] C S MCCAMY. Correlated color temperature as an explicit function of chromaticity coordinates. Color Research & Application(1992).

    [39] Y Y LIU, C Y TU. Research progress on Dy-activated crystals to realize yellow emission in one step via commercial blue LD pumping. Progress in Solid State Chemistry(2022).

    [40] Y LIU, F PAN, C TU et al. Structure, first-principles calculations and yellow spectral properties of Dy3+: CaLaGa3O7 single crystal. Journal of Luminescence(2021).

    Haidong WANG, Yan WANG, Zhaojie ZHU, Jianfu LI, Gandham LAKSHMINARAYANA, Chaoyang TU. Crystal Growth and Structural, Optical, and Visible Fluorescence Traits of Dy3+-doped SrGdGa3O7 Crystal [J]. Journal of Inorganic Materials, 2023, 38(12): 1475
    Download Citation