• Photonics Research
  • Vol. 11, Issue 5, 742 (2023)
Changping Zhang1, Shujun Liu1, Hao Yan1, Dajian Liu1、2, Long Zhang1, Huan Li1, Yaocheng Shi1、3, Liu Liu1, and Daoxin Dai1、3、*
Author Affiliations
  • 1State Key Laboratory for Modern Optical Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
  • 2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
  • 3Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
  • show less
    DOI: 10.1364/PRJ.483948 Cite this Article Set citation alerts
    Changping Zhang, Shujun Liu, Hao Yan, Dajian Liu, Long Zhang, Huan Li, Yaocheng Shi, Liu Liu, Daoxin Dai. Reconfigurable multichannel amplitude equalizer based on cascaded silicon photonic microrings[J]. Photonics Research, 2023, 11(5): 742 Copy Citation Text show less
    References

    [1] E. B. Basch, R. Egorov, S. Gringeri, S. Elby. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE J. Sel. Top. Quantum Electron., 12, 615-626(2006).

    [2] P. J. Winzer, D. T. Neilson, A. R. Chraplyvy. Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Opt. Express, 26, 24190-24239(2018).

    [3] N. S. Bergano. Wavelength division multiplexing in long-haul transoceanic transmission systems. J. Lightwave Technol., 23, 4125-4139(2005).

    [4] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, H. Bhaskaran. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [5] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, D. J. Moss. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [6] X. Xu, W. Han, M. Tan, Y. Sun, Y. Li, J. Wu, R. Morandotti, A. Mitchell, K. Xu, D. J. Moss. Neuromorphic computing based on wavelength-division multiplexing. IEEE J. Sel. Top. Quantum Electron., 29, 7400112(2023).

    [7] J. Capmany, B. Ortega, D. Pastor. A tutorial on microwave photonic filters. J. Lightwave Technol., 24, 201-229(2006).

    [8] R. A. Minasian. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech., 54, 832-846(2006).

    [9] V. Torres-Company, A. M. Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev., 8, 368-393(2014).

    [10] C. Lee. A MEMS VOA using electrothermal actuators. J. Lightwave Technol., 25, 490-498(2007).

    [11] K. H. Koh, T. Kobayashi, C. Lee. Low-voltage driven MEMS VOA using torsional attenuation mechanism based on piezoelectric beam actuators. IEEE Photon. Technol. Lett., 22, 1355-1357(2010).

    [12] K. Hirabayashi, C. Amano. Liquid-crystal level equalizer arrays on fiber arrays. IEEE Photon. Technol. Lett., 16, 527-529(2004).

    [13] D. C. Zografopoulos, R. Beccherelli. Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides. Plasmonics, 8, 599-604(2012).

    [14] G. Zhu, B. Wei, L. Shi, X. Lin, W. Hu, Z. Huang, Y. Lu. A fast response variable optical attenuator based on blue phase liquid crystal. Opt. Express, 21, 5332-5337(2013).

    [15] A. Maese-Novo, Z. Zhang, G. Irmscher, A. Polatynski, T. Mueller, D. de Felipe, M. Kleinert, W. Brinker, C. Zawadzki, N. Keil. Thermally optimized variable optical attenuators on a polymer platform. Appl. Opt., 54, 569-575(2015).

    [16] L. Wang, Q. Song, J. Wu, K. Chen. Low-power variable optical attenuator based on a hybrid SiON-polymer S-bend waveguide. Appl. Opt., 55, 969-973(2016).

    [17] S. Sun, D. Niu, Y. Sun, X. Wang, M. Yang, Y. Yi, X. Sun, F. Wang, D. Zhang. Design and fabrication of all-polymer thermo-optic variable optical attenuator with low power consumption. Appl. Phys. A, 123, 646(2017).

    [18] Y. Yin, M. Yao, Y. Ding, X. Xu, Y. Li, Y. Wu, D. Zhang. Polymer/silica hybrid waveguide thermo-optic VOA covering O-band. Micromachines, 13, 511(2022).

    [19] X. Chen, M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, G. T. Reed. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE, 106, 2101-2116(2018).

    [20] R. Helkey, A. A. M. Saleh, J. Buckwalter, J. E. Bowers. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 25, 8300215(2019).

    [21] D. Pérez, I. Gasulla, J. Capmany. Programmable multifunctional integrated nanophotonics. Nanophotonics, 7, 1351-1371(2018).

    [22] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [23] H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Park, R. Kou, K. Yamada, S. Itabashi. Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structure. Appl. Phys. Express, 3, 102203(2010).

    [24] H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, S. Itabashi. Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure. Jpn. J. Appl. Phys., 49, 04DG20(2010).

    [25] X. Wang, R. Aguinaldo, A. Lentine, C. DeRose, A. L. Starbuck, D. Trotter, A. Pomerene, S. Mookherjea. Compact silicon photonic resonance-assisted variable optical attenuator. Opt. Express, 24, 27600-27613(2016).

    [26] P. Yuan, Y. Wang, Y. Wu, J. An, X. Hu. Design and fabrication of two kind of SOI-based EA-type VOAs. Opt. Laser Technol., 102, 166-173(2018).

    [27] P. Yuan, Y. Wang, Y. Wu, J. An. Variable optical attenuators based on SOI with a 3 μm top silicon layer. Appl. Opt., 58, 4630-4636(2019).

    [28] Q. Fang, J. Song, G. Zhang, M. Yu, Y. Liu, G. Lo, D. Kwong. Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform. IEEE Photon. Technol. Lett., 21, 319-321(2009).

    [29] Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, J. Chen. Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures. Opt. Commun., 341, 69-73(2015).

    [30] S. Chen, Y. Shi, S. He, D. Dai. Variable optical attenuator based on a reflective Mach–Zehnder interferometer. Opt. Commun., 361, 55-58(2016).

    [31] X. Wu, W. Liu, Z. Yuan, X. Liang, H. Chen, X. Xu, F. Tang. Low power consumption VOA array with air trenches and curved waveguide. IEEE Photon. J., 10, 7201308(2018).

    [32] I. Ogawa, Y. Doi, Y. Hashizume, S. Kamei, Y. Tamura, M. Ishii, T. Kominato, H. Yamazaki, A. Kaneko. Packaging technology for ultra-small variable optical attenuator multiplexer (V-AWG) with multichip PLC integration structure using chip-scale-package PD array. IEEE J. Sel. Top. Quantum Electron., 12, 1045-1053(2006).

    [33] Y. Nasu, K. Watanabe, M. Itoh, H. Yamazaki, S. Kamei, R. Kasahara, I. Ogawa, A. Kaneko, Y. Inoue. Ultrasmall 100 GHz 40-channel VMUX/DEMUX based on single-chip 2.5%-Δ PLC. J. Lightwave Technol., 27, 2087-2094(2009).

    [34] L. Liu, L. Chang, Y. Kuang, Z. Li, Y. Liu, H. Guan, M. Tan, Y. Yu, Z. Li. Low-cost hybrid integrated 4 × 25  GBaud PAM-4 CWDM ROSA with a PLC-based arrayed waveguide grating de-multiplexer. Photon. Res., 7, 722-727(2019).

    [35] S. Jeong, Y. Onawa, D. Shimura, H. Okayama, T. Aoki, H. Yaegashi, T. Horikawa, T. Nakamura. Polarization diversified 16λ demultiplexer based on silicon wire delayed interferometers and arrayed waveguide gratings. J. Lightwave Technol., 38, 2680-2687(2020).

    [36] J. Zou, X. Ma, X. Xia, J. Hu, C. Wang, M. Zhang, T. Lang, J. He. High resolution and ultra-compact on-chip spectrometer using bidirectional edge-input arrayed waveguide grating. J. Lightwave Technol., 38, 4447-4453(2020).

    [37] S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, A. W. Poon. Silicon photonics: from a microresonator perspective. Laser Photon. Rev., 6, 145-177(2012).

    [38] D. Liu, L. Zhang, Y. Tan, D. Dai. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Lightwave Technol., 39, 5910-5916(2021).

    [39] D. Liu, J. He, Y. Xiang, Y. Xu, D. Dai. High-performance silicon photonic filters based on all-passive tenth-order adiabatic elliptical-microrings. APL Photon., 7, 051303(2022).

    [40] A. Li, W. Bogaerts. Using backscattering and backcoupling in silicon ring resonators as a new degree of design freedom. Laser Photon. Rev., 13, 1800244(2019).

    [41] L. Jia, C. Li, T. Liow, G. Lo. Efficient suspended coupler with loss less than −1.4 dB between Si-photonic waveguide and cleaved single mode fiber. J. Lightwave Technol., 36, 239-244(2018).

    [42] A. He, X. Guo, K. Wang, Y. Zhang, Y. Su. Low loss, large bandwidth fiber-chip edge couplers based on silicon-on-insulator platform. J. Lightwave Technol., 38, 4780-4786(2020).

    [43] J. C. C. Mak, T. Xue, Z. Yong, J. K. S. Poon. Wavelength tunable matched-pair Vernier multi-ring filters using derivative-free optimization algorithms. IEEE J. Sel. Top. Quantum Electron., 26, 5900212(2020).

    [44] F. Morichetti, M. Milanizadeh, M. Petrini, F. Zanetto, G. Ferrari, D. O. de Aguiar, E. Guglielmi, M. Sampietro, A. Melloni. Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability. Nat. Commun., 12, 4324(2021).

    [45] D. Liu, C. Zhang, D. Liang, D. Dai. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range. Opt. Express, 27, 416-422(2019).

    [46] Q. Cheng, L. Y. Dai, N. C. Abrams, Y.-H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, K. Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photon. Res., 7, 155-161(2019).

    [47] X. Xiao, R. Proietti, G. Liu, H. Lu, P. Fotouhi, S. Werner, Y. Zhang, S. J. B. Yoo. Silicon photonic Flex-LIONS for bandwidth-reconfigurable optical interconnects. IEEE J. Sel. Top. Quantum Electron., 26, 3700210(2020).

    [48] H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie, M. Jin, A. Netherton, Z. Tao, X. Zhang, R. Chen, B. Bai, J. Qin, S. Yu, X. Wang, J. E. Bowers. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [49] A. Rizzo, S. Daudlin, A. Novick, A. James, V. Gopal, V. Murthy, Q. Cheng, B. Y. Kim, X. Ji, Y. Okawachi, M. van Niekerk, V. Deenadayalan, G. Leake, M. Fanto, S. Preble, M. Lipson, A. Gaeta, K. Bergman. Petabit-scale silicon photonic interconnects with integrated Kerr frequency combs. IEEE J. Sel. Top. Quantum Electron., 29, 3700120(2023).

    [50] A. N. Tait, A. X. Wu, T. F. de Lima, E. Zhou, B. J. Shastri, M. A. Nahmias, P. R. Prucnal. Microring weight banks. IEEE J. Sel. Top. Quantum Electron., 22, 312-325(2016).

    [51] R. Wu, C. M. Long, D. E. Leaird, A. M. Weiner. Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation. IEEE Photon. Technol. Lett., 24, 1484-1486(2012).

    [52] X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source [Invited]. Photon. Res., 6, B30-B36(2018).

    Changping Zhang, Shujun Liu, Hao Yan, Dajian Liu, Long Zhang, Huan Li, Yaocheng Shi, Liu Liu, Daoxin Dai. Reconfigurable multichannel amplitude equalizer based on cascaded silicon photonic microrings[J]. Photonics Research, 2023, 11(5): 742
    Download Citation