• Photonics Research
  • Vol. 9, Issue 7, 1358 (2021)
Zhong Zuo1、†, Chenglin Gu1、3、†,*, Daowang Peng1, Xing Zou1, Yuanfeng Di1, Lian Zhou1, Daping Luo1, Yang Liu1, and Wenxue Li1、2、4、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3e-mail: clgu@lps.ecnu.edu.cn
  • 4e-mail: wxli@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.422397 Cite this Article Set citation alerts
    Zhong Zuo, Chenglin Gu, Daowang Peng, Xing Zou, Yuanfeng Di, Lian Zhou, Daping Luo, Yang Liu, Wenxue Li. Broadband mid-infrared molecular spectroscopy based on passive coherent optical–optical modulated frequency combs[J]. Photonics Research, 2021, 9(7): 1358 Copy Citation Text show less
    References

    [1] A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, M. E. Fermann. Ultra-broadband dual-branch optical frequency comb with 10−18 instability. Optica, 5, 1070-1077(2018).

    [2] T. W. Hänsch. Nobel lecture: passion for precision. Rev. Mod. Phys., 78, 1297-1309(2006).

    [3] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [4] A. V. Muraviev, V. O. Smolski, Z. E. Loparo, K. L. Vodopyanov. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics, 12, 209-214(2018).

    [5] G. Ycas, F. R. Giorgetta, K. C. Cossel, E. M. Waxman, E. Baumann, N. R. Newbury, I. Coddington. Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica, 6, 165-168(2019).

    [6] S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, N. Picqué. Doppler-free Fourier transform spectroscopy. Opt. Lett., 43, 162-165(2018).

    [7] C. Wang, Z. Deng, C. Gu, Y. Liu, D. Luo, Z. Zhu, W. Li, H. Zeng. Line-scan spectrum-encoded imaging by dual-comb interferometry. Opt. Lett., 43, 1606-1609(2018).

    [8] E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, T. Yasui. Scan-less confocal phase imaging based on dual-comb microscopy. Optica, 5, 634-643(2018).

    [9] M. Tamamitsu, K. Toda, H. Shimada, T. Honda, M. Takarada, K. Okabe, Y. Nagashima, R. Horisaki, T. Ideguchi. Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect. Optica, 7, 359-366(2020).

    [10] J. Mandon, G. Guelachvili, N. Picqué. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics, 3, 99-102(2009).

    [11] K. Hiramatsu, Y. Luo, T. Ideguchi, K. Goda. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection. Opt. Lett., 42, 4335-4338(2017).

    [12] C. Gohle, B. Stein, A. Schliesser, T. Udem, T. W. Hänsch. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett., 99, 263902(2007).

    [13] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2007).

    [14] L. Rutkowski, J. Morville. Broadband cavity-enhanced molecular spectra from Vernier filtering of a complete frequency comb. Opt. Lett., 39, 6664-6667(2014).

    [15] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [16] M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, A. Khodabakhsh. Time-resolved mid-infrared dual-comb spectroscopy. Sci. Rep., 9, 17247(2019).

    [17] T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch. Coherent Raman spectro-imaging with laser frequency combs. Nature, 502, 355-358(2013).

    [18] K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, N. Picqué. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency. Opt. Lett., 42, 318-321(2017).

    [19] J. T. Friedlein, E. Baumann, K. A. Briggman, G. M. Colacion, F. R. Giorgetta, A. M. Goldfain, D. I. Herman, E. V. Hoenig, J. Hwang, N. R. Newbury, E. F. Perez, C. S. Yung, I. Coddington, K. C. Cossel. Dual-comb photoacoustic spectroscopy. Nat. Commun., 11, 3152(2020).

    [20] B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics, 4, 55-57(2010).

    [21] N. Hoghooghi, R. J. Wright, A. S. Makowiecki, W. C. Swann, E. M. Waxman, I. Coddington, G. B. Rieker. Broadband coherent cavity-enhanced dual-comb spectroscopy. Optica, 6, 28-33(2018).

    [22] A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, N. Picqué. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs. Phys. Rev. A, 90, 011805(2014).

    [23] S. Reinhardt, E. Peters, T. W. Hänsch, T. Udem. Two-photon direct frequency comb spectroscopy with chirped pulses. Phys. Rev. A, 81, 033427(2010).

    [24] I. Coddington, W. C. Swann, N. R. Newbury. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett., 100, 013902(2008).

    [25] G. Truong, E. M. Waxman, K. C. Cossel, E. Baumann, A. Klose, F. R. Giorgetta, W. C. Swann, N. R. Newbury, I. Coddington. Accurate frequency referencing for fieldable dual-comb spectroscopy. Opt. Express, 24, 30495-30504(2016).

    [26] Z. Zhu, Y. Liu, D. Luo, C. Gu, L. Zhou, G. Xie, Z. Deng, W. Li. Tunable optical frequency comb from a compact and robust Er:fiber laser. High Power Laser Sci. Eng., 8, e17(2020).

    [27] Z. Chen, M. Yan, T. W. Hänsch, N. Picqué. A phase-stable dual-comb interferometer. Nat. Commun., 9, 1(2018).

    [28] Z. Chen, T. W. Hänsch, N. Picqué. Mid-infrared feed-forward dual-comb spectroscopy. Proc. Natl. Acad. Sci. USA, 116, 3454-3459(2019).

    [29] Z. Chen, T. W. Hänsch, N. Picqué. Upconversion mid-infrared dual-comb spectroscopy(2020).

    [30] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).

    [31] G. Ycas, F. R. Giorgetta, J. T. Friedlein, D. Herman, K. C. Cossel, E. Baumann, N. R. Newbury, I. Coddington. Compact mid-infrared dual-comb spectrometer for outdoor spectroscopy. Opt. Express, 28, 14740-14752(2020).

    [32] G. Cerullo, A. Baltuška, O. D. Mücke, C. Vozzi. Few-optical-cycle light pulses with passive carrier-envelope phase stabilization. Laser Photon. Rev., 5, 323-351(2011).

    [33] S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, M. Ebrahim-Zadeh. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti: sapphire laser. Laser Photon. Rev., 8, L86-L91(2014).

    [34] Y. Jin, S. M. Cristescu, F. J. M. Harren, J. Mandon. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Appl. Phys. B, 119, 65-74(2015).

    [35] M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, A. L. Gaeta. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).

    [36] L. A. Sterczewski, M. Bagheri, C. Frez, C. L. Canedy, I. Vurgaftman, J. R. Meyer. Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors. Appl. Phys. Lett., 116, 141102(2020).

    [37] G. Villares, A. Hugi, S. Blaser, J. Faist. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun., 5, 1-9(2014).

    [38] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 6, 5192(2015).

    [39] Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, R. Wang. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photon. Rev., 11, 1700005(2017).

    [40] E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury. Spectroscopy of the methane v3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A, 84, 062513(2011).

    [41] F. Zhu, A. Bicer, R. Askar, J. Bounds, A. A. Kolomenskii, V. Kelessides, M. Amani, H. A. Schuessler. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett., 12, 095701(2015).

    [42] G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, N. R. Newbury. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics, 12, 202-208(2018).

    [43] T. Ideguchi, T. Nakamura, Y. Kobayashi, K. Goda. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica, 3, 748-753(2016).

    [44] X. Zhao, T. Li, Y. Liu, Q. Li, Z. Zheng. Polarization-multiplexed, dual-comb all-fiber mode-locked laser. Photon. Res., 6, 853-857(2018).

    [45] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, N. Picqué. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2015).

    [46] M. Yan, P. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, N. Picqué. Mid-infrared dual-comb spectroscopy with electro-optic modulator. Light Sci. Appl., 6, e17076(2017).

    [47] C. Gu, Z. Zuo, D. Luo, Z. Deng, Y. Liu, M. Hu, W. Li. Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers. PhotoniX, 1, 7(2020).

    [48] F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, P. De Natale. Frequency stability characterization of a quantum cascade laser frequency comb. Laser Photon. Rev., 10, 623-630(2016).

    [49] Q. Fu, L. Xu, S. Liang, P. C. Shardlow, D. P. Shepherd, S.-U. Alam, D. J. Richardson. High-beam-quality, watt-level, widely tunable, mid-infrared OP-GaAs optical parametric oscillator. Opt. Lett., 44, 2744-2747(2019).

    [50] C. Gu, Z. Zuo, D. Luo, D. Peng, Y. Di, X. Zou, L. Yang, W. Li. High-repetition-rate femtosecond mid-infrared pulses generated by nonlinear optical modulation of continuous-wave QCLs and ICLs. Opt. Lett., 44, 5848-5851(2019).

    [51] C. Gu, Z. Zuo, D. Peng, Y. Di, X. Zou, D. Luo, Y. Liu, W. Li. High-repetition-rate mid-IR femtosecond pulse synthesis from two mid-IR CW QCL-seeded OPAs. Opt. Express, 28, 27433-27442(2020).

    [52] T. Ideguchi, A. Poisson, G. Guelachvili, N. Picque, T. W. Hansch. Adaptive real-time dual-comb spectroscopy. Nat. Commun., 5, 3375(2014).

    [53] D. Burghoff, Y. Yang, Q. Hu. Computational multiheterodyne spectroscopy. Sci. Adv., 2, e1601227(2016).

    [54] W. Chen, J. Fan, A. Ge, H. Song, Y. Song, B. Liu, L. Chai, C. Wang, M. Hu. Intensity and temporal noise characteristics in femtosecond optical parametric amplifiers. Opt. Express, 25, 31263-31272(2017).

    [55] L. Zhou, Y. Liu, H. Lou, Y. Di, G. Xie, Z. Zhu, Z. Deng, D. Luo, C. Gu, H. Chen, W. Li. Octave mid-infrared optical frequency comb from Er:fiber-laser-pumped aperiodically poled Mg:LiNbO3. Opt. Lett., 45, 6458-6461(2020).

    [56] National Toxicology. NTP 12th report on carcinogens. Rep. Carcinog., 12, iii-499(2011).

    [57] World Health. WHO Guidelines for Indoor Air Quality: Selected Pollutants, 103-156(2010).

    [58] C. Gu, X. Zou, Z. Zuo, D. Peng, Y. Di, Y. Liu, D. Luo, W. Li. Doppler velocimeter based on dual-comb absorption spectroscopy. Photon. Res., 8, 1895-1903(2020).

    [59] F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, J. Ye. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express, 18, 21861-21872(2010).

    [60] H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, S. A. Diddams. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 5, 727-732(2018).

    Zhong Zuo, Chenglin Gu, Daowang Peng, Xing Zou, Yuanfeng Di, Lian Zhou, Daping Luo, Yang Liu, Wenxue Li. Broadband mid-infrared molecular spectroscopy based on passive coherent optical–optical modulated frequency combs[J]. Photonics Research, 2021, 9(7): 1358
    Download Citation