• Photonics Research
  • Vol. 8, Issue 12, 1895 (2020)
Chenglin Gu1、†, Xing Zou1、†, Zhong Zuo, Daowang Peng, Yuanfeng Di, Yang Liu, Daping Luo, and Wenxue Li*
Author Affiliations
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.1364/PRJ.398876 Cite this Article Set citation alerts
    Chenglin Gu, Xing Zou, Zhong Zuo, Daowang Peng, Yuanfeng Di, Yang Liu, Daping Luo, Wenxue Li. Doppler velocimeter based on dual-comb absorption spectroscopy[J]. Photonics Research, 2020, 8(12): 1895 Copy Citation Text show less
    References

    [1] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [2] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [3] P. Martín-Mateos, F. U. Khan, O. E. Bonilla-Manrique. Direct hyperspectral dual-comb imaging. Optica, 7, 199-202(2020).

    [4] J. Bergevin, T. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, R. J. Jones. Dual-comb spectroscopy of laser-induced plasmas. Nat. Commun., 9, 1273(2018).

    [5] T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, T. Yasui. Dual-comb spectroscopic ellipsometry. Nat. Commun., 8, 610(2017).

    [6] M. Suh, Q. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [7] N. H. Pinkowski, Y. Ding, C. L. Strand, R. K. Hanson, R. Horvarth, M. Geiser. Dual-comb spectroscopy for high-temperature reaction kinetics. Meas. Sci. Technol., 31, 055501(2020).

    [8] P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, G. B. Rieker. Dual frequency comb laser absorption spectroscopy in a 16  MW gas turbine exhaust. Proc. Combust. Inst., 36, 4565-4573(2017).

    [9] A. D. Draper, R. K. Cole, A. S. Makowiecki, J. Mohr, A. Zdanowicz, A. Marchese, N. Hoghooghi, G. B. Rieker. Broadband dual-frequency comb spectroscopy in a rapid compression machine. Opt. Express, 27, 10814-10825(2019).

    [10] T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, T. W. Hänsch. Adaptive real-time dual-comb spectroscopy. Nat. Commun., 5, 3375(2014).

    [11] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, N. Picqué. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2016).

    [12] K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G. Truong, G. B. Rieker, N. R. Newbury. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica, 4, 724-728(2017).

    [13] G. Ycas, F. R. Giorgetta, K. C. Cossel, E. M. Waxman, E. Baumann, N. R. Newbury, I. Coddington. Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica, 6, 165-168(2019).

    [14] T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, N. Picqué. Adaptive dual-comb spectroscopy in the green region. Opt. Lett., 37, 4847-4849(2012).

    [15] J. Mandon, G. Guelachvili, N. Picqué. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics, 3, 99-102(2009).

    [16] E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, N. Picqué. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4  μm region with a Cr2+:ZnSe femtosecond laser. Opt. Lett., 15, 16540-16545(2007).

    [17] T. S. Strickler, T. K. Langin, P. McQuillen, J. Daligault, T. C. Killian. Experimental measurement of self-diffusion in a strongly coupled plasma. Phys. Rev. X, 6, 021021(2016).

    [18] F. Zhao, H. Hiroyasu. The applications of laser Rayleigh scattering to combustion diagnostics. Proc. Combust. Inst., 19, 447-485(1993).

    [19] E. W. Rothe, P. Andresen. Application of tunable excimer lasers to combustion diagnostics: a review. Appl. Opt., 36, 3971-4033(1997).

    [20] R. K. Hanson. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst., 33, 1-40(2011).

    [21] Z. Liu, J. F. Barlow, P. Chan, J. C. H. Fung, Y. Li, C. Ren, H. W. L. Mak, E. Ng. A review of progress and applications of pulsed Doppler wind LiDARs. Remote Sens., 11, 2522(2019).

    [22] J. Brunker, P. Beard. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids. Sci. Rep., 6, 20902(2016).

    [23] A. Ehn, J. Zhu, X. Li, J. Kiefer. Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering. Appl. Spectrosc., 71, 341-366(2017).

    [24] B. F. Bathel, C. Johansen, J. A. Inman, S. B. Jones, P. M. Danehy. Review of fluorescence-based velocimetry techniques to study high-speed compressible flows. 51th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, 339(2013).

    [25] S. Dai, T. Jiang, H. Wu, Z. Zhang, L. Wu, H. Gong, W. Weng, J. Deng, H. Zheng, W. Lin. Tunable narrow-linewidth 226  nm laser for hypersonic flow velocimetry. Opt. Lett., 45, 2291-2294(2020).

    [26] I. Ribet, T. Pot, M. Lefebvre. Coherent anti-Stokes Raman scattering velocimetry with nearly degenerate pumps. Appl. Phys. B, 74, 445-452(2002).

    [27] B. Scherrer, A. Godard, I. Ribet, P. Bouchardy, T. Pot, M. Lefebvre. Comparison of dephasing times for vibrational and rotational coherent anti-Stokes Raman scattering: implications for velocimetry. Appl. Phys. B, 71, 859-864(2000).

    [28] M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, J. Pan. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector. Opt. Lett., 42, 3541-3544(2017).

    [29] L. Lombard, M. Valla, C. Planchat, D. Goular, B. Augère, P. Bourdon, G. Canat. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source. Opt. Lett., 40, 1030-1033(2015).

    [30] F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors. Appl. Opt., 50, 6697-6707(2011).

    [31] G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle. A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures. Meas. Sci. Technol., 18, 1195-1204(2007).

    [32] L. S. Chang, J. B. Jeffries, R. K. Hanson. Mass flux sensing via tunable diode laser absorption of water vapor. AIAA J., 48, 2687-2693(2010).

    [33] C. L. Strand, R. K. Hanson. Thermometry and velocimetry in supersonic flows via scanned wavelength-modulation absorption spectroscopy. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 5600(2011).

    [34] I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson. Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor. 52nd Aerospace Sciences Meeting, 1241(2014).

    [35] K. H. Lyle, J. B. Jeffries, R. K. Hanson. Diode-laser sensor for air-mass flux 1: design and wind tunnel validation. AIAA J., 45, 2204-2212(2007).

    [36] F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, J. Ye. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express, 18, 21861-21872(2010).

    [37] A. Karpf, G. N. Rao. Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy. Appl. Opt., 48, 5061-5066(2009).

    [38] A. V. Muraviev, V. O. Smolski, Z. E. Loparo, K. L. Vodopyanov. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics, 12, 209-214(2018).

    [39] A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, J. Ye. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett., 5, 2241-2246(2014).

    [40] D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, H. Zeng. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification. Appl. Phys. Lett., 112, 061106(2018).

    [41] A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz. Opt. Lett., 37, 638-640(2012).

    [42] C. Gu, Z. Zuo, D. Luo, Z. Deng, Y. Liu, M. Hu, W. Li. Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers. PhotoniX, 1, 7(2020).

    [43] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, N. R. Newbury. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290-298(2014).

    [44] D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, S. B. Papp. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett., 42, 2314-2317(2017).

    [45] M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, H. Zeng. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification. Opt. Lett., 37, 1511-1513(2012).

    [46] A. C. Chan, E. Y. Lam, V. J. Srinivasan. Comparison of Kasai autocorrelation and maximum likelihood estimators for Doppler optical coherence tomography. IEEE Trans. Med. Imag., 32, 1033-1042(2013).

    [47] F. Cappelli, G. Campo, I. Galli, P. Natale. Frequency stability characterization of a quantum cascade laser frequency comb. Laser Photon. Rev., 10, 623-630(2016).

    [48] C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, J. V. Porto. Absolute transition frequencies and quantum interference in a frequency comb based measurement of the 6,7Li lines. Phys. Rev. Lett., 107, 023001(2011).

    [49] B. C. Smith, B. Lomsadze, S. T. Cundiff. Optimum repetition rates for dual-comb spectroscopy. Opt. Express, 26, 12049-12056(2018).

    [50] E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury. Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A, 84, 062513(2011).

    [51] J. Li, B. Yu, W. Zhao, W. Chen. A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl. Spectros. Rev., 49, 666-691(2014).

    [52] Z. Chen, M. Yan, T. W. Hänsch, N. Picqué. A phase-stable dual-comb interferometer. Nat. Commun., 9, 3035(2018).

    [53] N. R. Newbury, I. Coddington, W. Swann. Sensitivity of coherent dual-comb spectroscopy. Opt. Express, 18, 7929-7945(2010).

    [54] M. Yan, P. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, N. Picqué. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light: Sci. Appl., 6, e17076(2017).

    [55] Z. Chen, T. W. Hänsch, N. Picqué. Mid-infrared feed-forward dual-comb spectroscopy. Proc. Natl. Acad. Sci. USA, 116, 3454-3459(2019).

    [56] G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, N. R. Newbury. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2  μm. Nat. Photonics, 12, 202-208(2018).

    [57] H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, S. A. Diddams. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 5, 727-732(2018).

    CLP Journals

    [1] Zhong Zuo, Chenglin Gu, Daowang Peng, Xing Zou, Yuanfeng Di, Lian Zhou, Daping Luo, Yang Liu, Wenxue Li. Broadband mid-infrared molecular spectroscopy based on passive coherent optical–optical modulated frequency combs[J]. Photonics Research, 2021, 9(7): 1358

    Chenglin Gu, Xing Zou, Zhong Zuo, Daowang Peng, Yuanfeng Di, Yang Liu, Daping Luo, Wenxue Li. Doppler velocimeter based on dual-comb absorption spectroscopy[J]. Photonics Research, 2020, 8(12): 1895
    Download Citation