• Photonics Research
  • Vol. 8, Issue 12, 1895 (2020)
Chenglin Gu1,†, Xing Zou1,†, Zhong Zuo, Daowang Peng..., Yuanfeng Di, Yang Liu, Daping Luo and Wenxue Li*|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.1364/PRJ.398876 Cite this Article Set citation alerts
    Chenglin Gu, Xing Zou, Zhong Zuo, Daowang Peng, Yuanfeng Di, Yang Liu, Daping Luo, Wenxue Li, "Doppler velocimeter based on dual-comb absorption spectroscopy," Photonics Res. 8, 1895 (2020) Copy Citation Text show less
    References

    [1] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [2] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [3] P. Martín-Mateos, F. U. Khan, O. E. Bonilla-Manrique. Direct hyperspectral dual-comb imaging. Optica, 7, 199-202(2020).

    [4] J. Bergevin, T. Wu, J. Yeak, B. E. Brumfield, S. S. Harilal, M. C. Phillips, R. J. Jones. Dual-comb spectroscopy of laser-induced plasmas. Nat. Commun., 9, 1273(2018).

    [5] T. Minamikawa, Y. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, T. Yasui. Dual-comb spectroscopic ellipsometry. Nat. Commun., 8, 610(2017).

    [6] M. Suh, Q. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [7] N. H. Pinkowski, Y. Ding, C. L. Strand, R. K. Hanson, R. Horvarth, M. Geiser. Dual-comb spectroscopy for high-temperature reaction kinetics. Meas. Sci. Technol., 31, 055501(2020).

    [8] P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, G. B. Rieker. Dual frequency comb laser absorption spectroscopy in a 16  MW gas turbine exhaust. Proc. Combust. Inst., 36, 4565-4573(2017).

    [9] A. D. Draper, R. K. Cole, A. S. Makowiecki, J. Mohr, A. Zdanowicz, A. Marchese, N. Hoghooghi, G. B. Rieker. Broadband dual-frequency comb spectroscopy in a rapid compression machine. Opt. Express, 27, 10814-10825(2019).

    [10] T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, T. W. Hänsch. Adaptive real-time dual-comb spectroscopy. Nat. Commun., 5, 3375(2014).

    [11] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, N. Picqué. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2016).

    [12] K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G. Truong, G. B. Rieker, N. R. Newbury. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica, 4, 724-728(2017).

    [13] G. Ycas, F. R. Giorgetta, K. C. Cossel, E. M. Waxman, E. Baumann, N. R. Newbury, I. Coddington. Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica, 6, 165-168(2019).

    [14] T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, N. Picqué. Adaptive dual-comb spectroscopy in the green region. Opt. Lett., 37, 4847-4849(2012).

    [15] J. Mandon, G. Guelachvili, N. Picqué. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics, 3, 99-102(2009).

    [16] E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, N. Picqué. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4  μm region with a Cr2+:ZnSe femtosecond laser. Opt. Lett., 15, 16540-16545(2007).

    [17] T. S. Strickler, T. K. Langin, P. McQuillen, J. Daligault, T. C. Killian. Experimental measurement of self-diffusion in a strongly coupled plasma. Phys. Rev. X, 6, 021021(2016).

    [18] F. Zhao, H. Hiroyasu. The applications of laser Rayleigh scattering to combustion diagnostics. Proc. Combust. Inst., 19, 447-485(1993).

    [19] E. W. Rothe, P. Andresen. Application of tunable excimer lasers to combustion diagnostics: a review. Appl. Opt., 36, 3971-4033(1997).

    [20] R. K. Hanson. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst., 33, 1-40(2011).

    [21] Z. Liu, J. F. Barlow, P. Chan, J. C. H. Fung, Y. Li, C. Ren, H. W. L. Mak, E. Ng. A review of progress and applications of pulsed Doppler wind LiDARs. Remote Sens., 11, 2522(2019).

    [22] J. Brunker, P. Beard. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids. Sci. Rep., 6, 20902(2016).

    [23] A. Ehn, J. Zhu, X. Li, J. Kiefer. Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering. Appl. Spectrosc., 71, 341-366(2017).

    [24] B. F. Bathel, C. Johansen, J. A. Inman, S. B. Jones, P. M. Danehy. Review of fluorescence-based velocimetry techniques to study high-speed compressible flows. 51th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, 339(2013).

    [25] S. Dai, T. Jiang, H. Wu, Z. Zhang, L. Wu, H. Gong, W. Weng, J. Deng, H. Zheng, W. Lin. Tunable narrow-linewidth 226  nm laser for hypersonic flow velocimetry. Opt. Lett., 45, 2291-2294(2020).

    [26] I. Ribet, T. Pot, M. Lefebvre. Coherent anti-Stokes Raman scattering velocimetry with nearly degenerate pumps. Appl. Phys. B, 74, 445-452(2002).

    [27] B. Scherrer, A. Godard, I. Ribet, P. Bouchardy, T. Pot, M. Lefebvre. Comparison of dephasing times for vibrational and rotational coherent anti-Stokes Raman scattering: implications for velocimetry. Appl. Phys. B, 71, 859-864(2000).

    [28] M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, J. Pan. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector. Opt. Lett., 42, 3541-3544(2017).

    [29] L. Lombard, M. Valla, C. Planchat, D. Goular, B. Augère, P. Bourdon, G. Canat. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source. Opt. Lett., 40, 1030-1033(2015).

    [30] F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors. Appl. Opt., 50, 6697-6707(2011).

    [31] G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle. A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures. Meas. Sci. Technol., 18, 1195-1204(2007).

    [32] L. S. Chang, J. B. Jeffries, R. K. Hanson. Mass flux sensing via tunable diode laser absorption of water vapor. AIAA J., 48, 2687-2693(2010).

    [33] C. L. Strand, R. K. Hanson. Thermometry and velocimetry in supersonic flows via scanned wavelength-modulation absorption spectroscopy. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 5600(2011).

    [34] I. A. Schultz, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson. Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor. 52nd Aerospace Sciences Meeting, 1241(2014).

    [35] K. H. Lyle, J. B. Jeffries, R. K. Hanson. Diode-laser sensor for air-mass flux 1: design and wind tunnel validation. AIAA J., 45, 2204-2212(2007).

    [36] F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, J. Ye. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express, 18, 21861-21872(2010).

    [37] A. Karpf, G. N. Rao. Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy. Appl. Opt., 48, 5061-5066(2009).

    [38] A. V. Muraviev, V. O. Smolski, Z. E. Loparo, K. L. Vodopyanov. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics, 12, 209-214(2018).

    [39] A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, J. Ye. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett., 5, 2241-2246(2014).

    [40] D. Luo, Y. Liu, C. Gu, C. Wang, Z. Zhu, W. Zhang, Z. Deng, L. Zhou, W. Li, H. Zeng. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification. Appl. Phys. Lett., 112, 061106(2018).

    [41] A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, N. R. Newbury. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz. Opt. Lett., 37, 638-640(2012).

    [42] C. Gu, Z. Zuo, D. Luo, Z. Deng, Y. Liu, M. Hu, W. Li. Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers. PhotoniX, 1, 7(2020).

    [43] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, N. R. Newbury. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290-298(2014).

    [44] D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, S. B. Papp. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett., 42, 2314-2317(2017).

    [45] M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, H. Zeng. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification. Opt. Lett., 37, 1511-1513(2012).

    [46] A. C. Chan, E. Y. Lam, V. J. Srinivasan. Comparison of Kasai autocorrelation and maximum likelihood estimators for Doppler optical coherence tomography. IEEE Trans. Med. Imag., 32, 1033-1042(2013).

    [47] F. Cappelli, G. Campo, I. Galli, P. Natale. Frequency stability characterization of a quantum cascade laser frequency comb. Laser Photon. Rev., 10, 623-630(2016).

    [48] C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, J. V. Porto. Absolute transition frequencies and quantum interference in a frequency comb based measurement of the 6,7Li lines. Phys. Rev. Lett., 107, 023001(2011).

    [49] B. C. Smith, B. Lomsadze, S. T. Cundiff. Optimum repetition rates for dual-comb spectroscopy. Opt. Express, 26, 12049-12056(2018).

    [50] E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, N. R. Newbury. Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A, 84, 062513(2011).

    [51] J. Li, B. Yu, W. Zhao, W. Chen. A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl. Spectros. Rev., 49, 666-691(2014).

    [52] Z. Chen, M. Yan, T. W. Hänsch, N. Picqué. A phase-stable dual-comb interferometer. Nat. Commun., 9, 3035(2018).

    [53] N. R. Newbury, I. Coddington, W. Swann. Sensitivity of coherent dual-comb spectroscopy. Opt. Express, 18, 7929-7945(2010).

    [54] M. Yan, P. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, N. Picqué. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light: Sci. Appl., 6, e17076(2017).

    [55] Z. Chen, T. W. Hänsch, N. Picqué. Mid-infrared feed-forward dual-comb spectroscopy. Proc. Natl. Acad. Sci. USA, 116, 3454-3459(2019).

    [56] G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, N. R. Newbury. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2  μm. Nat. Photonics, 12, 202-208(2018).

    [57] H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, S. A. Diddams. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 5, 727-732(2018).

    CLP Journals

    [1] Zhong Zuo, Chenglin Gu, Daowang Peng, Xing Zou, Yuanfeng Di, Lian Zhou, Daping Luo, Yang Liu, Wenxue Li, "Broadband mid-infrared molecular spectroscopy based on passive coherent optical–optical modulated frequency combs," Photonics Res. 9, 1358 (2021)

    Chenglin Gu, Xing Zou, Zhong Zuo, Daowang Peng, Yuanfeng Di, Yang Liu, Daping Luo, Wenxue Li, "Doppler velocimeter based on dual-comb absorption spectroscopy," Photonics Res. 8, 1895 (2020)
    Download Citation