• Photonics Research
  • Vol. 10, Issue 1, 111 (2022)
Kai Wang1、†, Xinjia Qiu1、†, Zesheng Lv1, Zhiyuan Song1, and Hao Jiang1、2、3、*
Author Affiliations
  • 1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 3Guangdong Engineering Technology R & D Center of Compound Semiconductors and Devices, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.1364/PRJ.444444 Cite this Article Set citation alerts
    Kai Wang, Xinjia Qiu, Zesheng Lv, Zhiyuan Song, Hao Jiang. Ultrahigh detectivity, high-speed and low-dark current AlGaN solar-blind heterojunction field-effect phototransistors realized using dual-float-photogating effect[J]. Photonics Research, 2022, 10(1): 111 Copy Citation Text show less
    References

    [1] C. Xie, X. T. Lu, X. W. Tong, Z. X. Zhang, F. X. Liang, L. Liang, L. B. Luo, Y. C. Wu. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater., 29, 1806006(2019).

    [2] M. Razeghi. Short-wavelength solar-blind detectors: status, prospects, and markets. Proc. IEEE, 90, 1006-1014(2002).

    [3] G. Chen, F. Abou-Galala, Z. Xu, B. M. Sadler. Experimental evaluation of LED-based solar blind NLOS communication links. Opt. Express, 16, 15059-15068(2008).

    [4] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, U. K. Mishra. Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices, 48, 2181-2183(2001).

    [5] T.-M. Kuan, S.-J. Chang, Y.-K. Su, C.-H. Ko, J. B. Webb, J. A. Bardwell, Y. Liu, H. Tang, W.-P. Lin, Y.-T. Cherng, W.-H. Lan. High optical-gain AlGaN/GaN2 dimensional electron gas photodetectors. Jpn. J. Appl. Phys., 42, 5563-5564(2003).

    [6] A. Yoshikawa, S. Ushida, K. Nagase, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl. Phys. Lett., 111, 191103(2017).

    [7] H. L. Wu, W. C. Wu, H. X. Zhang, Y. D. Chen, Z. S. Wu, G. Wang, H. Jiang. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain. Appl. Phys. Express, 9, 052103(2016).

    [8] Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, Z. H. Li. High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett., 35, 372-374(2014).

    [9] L. X. Zhang, S. J. Tang, C. S. Liu, B. Li, H. L. Wu, H. L. Wang, Z. S. Wu, H. Jiang. Demonstration of solar-blind AlxGa1-xN-based heterojunction phototransistors. Appl. Phys. Lett., 107, 233501(2015).

    [10] L. J. Sun, Z. S. Lv, Z. H. Zhang, X. J. Qiu, H. Jiang. High-performance AlGaN heterojunction phototransistor with dopant-free polarization-doped p-base. IEEE Electron Device Lett., 41, 325-328(2020).

    [11] T. Narita, A. Wakejima, T. Egawa. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn. J. Appl. Phys., 52, 01AG06(2013).

    [12] A. M. Armstrong, B. Klein, A. A. Allerman, E. A. Douglas, A. G. Baca, M. H. Crawford, G. W. Pickrell, C. A. Sanchez. Visible-blind and solar-blind detection induced by defects in AlGaN high electron mobility transistors. J. Appl. Phys., 123, 114502(2018).

    [13] Q. F. Lyu, H. X. Jiang, K. M. Lau. High gain and high ultraviolet/visible rejection ratio photodetectors using p-GaN/AlGaN/GaN heterostructures grown on Si. Appl. Phys. Lett., 117, 071101(2020).

    [14] M. Iwaya, S. Miura, T. Fujii, S. Kamiyama, H. Amano, I. Akasaki. High-performance UV detector based on AlGaN/GaN junction heterostructure-field-effect transistor with a p-GaN gate. Phys. Status Solidi C, 6, S972-S975(2009).

    [15] M. A. Khan, Q. Chen, J. N. Kuznia, C. J. Sun, M. S. Shur. Gated photodetector based on GaN/AlGaN heterostructure field effect transistor. Electron. Lett., 31, 398-400(1995).

    [16] S. H. Baek, G. W. Lee, C. Y. Cho, S. N. Lee. Gate-controlled amplifiable ultraviolet AlGaN/GaN high-electron-mobility phototransistor. Sci. Rep., 11, 7172(2021).

    [17] X. J. Qiu, H. Jiang. Highly conductive and 260 nm transparent p-type Al0.6Ga0.4N achieved utilizing interface doping effects. Cryst. Growth Des., 21, 2389-2397(2021).

    [18] H. Jiang, G. Y. Zhao, H. Ishikawa, T. Egawa, T. Jimbo, M. Umeno. Determination of exciton transition energy and bowing parameter of AlGaN alloys in AlGaN/GaN heterostructure by means of reflectance measurement. J. Appl. Phys., 89, 1046-1052(2001).

    [19] P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, S. P. DenBaars, J. S. Speck. Role of inclined threading dislocations in stress relaxation in mismatched layers. J. Appl. Phys., 97, 103534(2005).

    [20] A. Jiménez, Z. Bougrioua, J. M. Tirado, A. F. Braña, E. Calleja, E. Muñoz, I. Moerman. Improved AlGaN/GaN high electron mobility transistor using AlN interlayers. Appl. Phys. Lett., 82, 4827-4829(2003).

    [21] K. Takeuchi, S. Adachi, K. Ohtsuka. Optical properties of AlxGa1-xN alloy. J. Appl. Phys., 107, 023306(2010).

    [22] Z. H. Zaidi, P. A. Houston. Highly sensitive UV detection mechanism in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices, 60, 2776-2781(2013).

    [23] M. A. Green. Solar cells—operating principles, technology and system applications. Sol. Energy, 28, 447(1982).

    [24] S. M. Sze, K. K. Ng. Physics of Semiconductor Devices(2006).

    [25] B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, B. M. Onat. Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm. IEEE Photon. Technol. Lett., 23, 218-220(2011).

    [26] H. Bae, A. Charnas, X. Sun, J. Noh, M. Si, W. Chung, G. Qiu, X. Lyu, S. Alghamdi, H. Wang, D. Zemlyanov, P. D. Ye. Solar-blind UV photodetector based on atomic layer-deposited Cu2O and nanomembrane β-Ga2O3 pn oxide heterojunction. ACS Omega, 4, 20756-20761(2019).

    [27] J. Ma, X. Xia, S. Yan, Y. Li, W. Liang, J. Yan, X. Chen, D. Wu, X. Li, Z. Shi. Stable and self-powered solar-blind ultraviolet photodetectors based on a Cs3Cu2I5/β-Ga2O3 heterojunction prepared by dual-source vapor codeposition. ACS Appl. Mater. Interfaces, 13, 15409-15419(2021).

    [28] B. S. Qiao, Z. Z. Zhang, X. H. Xie, B. H. Li, K. X. Li, X. Chen, H. F. Zhao, K. W. Liu, L. Liu, D. Z. Shen. Avalanche gain in metal-semiconductor-metal Ga2O3 solar-blind photodiodes. J. Phys. Chem. C, 123, 18516-18520(2019).

    [29] S. C. Wu, M. J. Wu, Y. F. Chen. Nanolayered graphene/hexagonal boron nitride/n-AlGaN heterostructures as solar-blind deep-ultraviolet photodetectors. ACS Appl. Nano Mater., 3, 7595-7603(2020).

    [30] J. Z. Li, J. Y. Lin, H. X. Jiang, M. A. Khan, Q. Chen. Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure. J. Appl. Phys., 82, 1227-1230(1997).

    [31] J. Sun, T. Zhan, Z. Liu, J. Wang, X. Yi, P. M. Sarro, G. Zhang. Suppression of persistent photoconductivity AlGaN/GaN heterostructure photodetectors using pulsed heating. Appl. Phys. Express, 12, 122007(2019).

    [32] A. Kalra, S. Rathkanthiwar, R. Muralidharan, S. Raghavan, D. N. Nath. Material-to-device performance correlation for AlGaN-based solar-blind p-i-n photodiodes. Semicond. Sci. Technol., 35, 035001(2020).

    [33] N. Biyikli, O. Aytur, I. Kimukin, T. Tut, E. Ozbay. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Appl. Phys. Lett., 81, 3272-3274(2002).

    [34] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, J. C. Campbell. Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode. Appl. Phys. Lett., 80, 3754-3756(2002).

    [35] T. Tut, M. Gokkavas, A. Inal, E. Ozbay. AlxGa1-xN-based avalanche photodiodes with high reproducible avalanche gain. Appl. Phys. Lett., 90, 163506(2007).

    Kai Wang, Xinjia Qiu, Zesheng Lv, Zhiyuan Song, Hao Jiang. Ultrahigh detectivity, high-speed and low-dark current AlGaN solar-blind heterojunction field-effect phototransistors realized using dual-float-photogating effect[J]. Photonics Research, 2022, 10(1): 111
    Download Citation