• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0500005 (2022)
Bolin Zhou, Guohui Li*, Jianhong Wu, Rong Wen, Huihui Pi, Yuying Hao, and Yanxia Cui**
Author Affiliations
  • College of Physics and Optoelectronics, Tai Yuan University of Technology, Taiyuan , Shanxi 030024, China
  • show less
    DOI: 10.3788/LOP202259.0500005 Cite this Article Set citation alerts
    Bolin Zhou, Guohui Li, Jianhong Wu, Rong Wen, Huihui Pi, Yuying Hao, Yanxia Cui. Perovskite Photonic Crystal Laser with Low Threshold[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500005 Copy Citation Text show less
    References

    [1] Noda S. Seeking the ultimate nanolaser[J]. Science, 314, 260-261(2006).

    [2] Yokoyama H. Physics and device applications of optical microcavities[J]. Science, 256, 66-70(1992).

    [3] Gao R, Li G H, Han Y et al. Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors[J]. Organic Electronics, 83, 105744(2020).

    [4] Wehrenfennig C, Eperon G E, Johnston M B et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 26, 1584-1589(2014).

    [5] Xing G C, Mathews N, Sun S Y et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 342, 344-347(2013).

    [6] Stranks S D, Eperon G E, Grancini G et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 342, 341-344(2013).

    [7] Deschler F, Price M, Pathak S et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. The Journal of Physical Chemistry Letters, 5, 1421-1426(2014).

    [8] Tan Z K, Moghaddam R S, Lai M L et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 9, 687-692(2014).

    [9] Xing G C, Mathews N, Lim S S et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 13, 476-480(2014).

    [10] Arumugam G M, Xu C X, Karunakaran S K et al. Low threshold lasing from novel thulium-incorporated C(NH2)3PbI3 perovskite thin films in Fabry-Pérot resonator[J]. Journal of Materials Chemistry C, 6, 12537-12546(2018).

    [11] Huang S H, Liu Z Z, Du J et al. Review of perovskite micro-and nano-lasers[J]. Laser & Optoelectronics Progress, 57, 071602(2020).

    [12] Markina D I, Pushkarev A P, Shishkin I I et al. Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation[J]. Nanophotonics, 9, 3977-3984(2020).

    [13] Li G H, Gao R, Han Y et al. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects[J]. Photonics Research, 8, 1862-1874(2020).

    [14] Li G H, Che T, Li X et al. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite[J]. Advanced Functional Materials, 29, 1805553(2019).

    [15] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [16] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [17] Shin W, Pandey A, Liu X H et al. Photonic crystal tunnel junction deep ultraviolet light emitting diodes with enhanced light extraction efficiency[J]. Optics Express, 27, 38413-38420(2019).

    [18] Feng L S, Zhang N, Wang J X et al. Effect of photonic crystals on the light extraction of GaN-based LED for different polarization modes of spontaneous radiation[J]. Results in Physics, 15, 102632(2019).

    [19] Aly A H, Zaky Z A. Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor[J]. Cryogenics, 104, 102991(2019).

    [20] Zhou L, Cui T, Feng S et al. A high-Q, high-sensitivity refractive index sensor based on abundant defective modes of a 12-fold quasiperiodic photonic crystal[J]. Laser Physics Letters, 16, 126205(2019).

    [21] Siraji A A, Zhao Y. High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors[J]. Optics Letters, 40, 1508-1511(2015).

    [22] Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review[J]. Advanced Photonics, 1, 014002(2019).

    [23] Englund D, Fattal D, Waks E et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal[J]. Physical Review Letters, 95, 013904(2005).

    [24] Yang Z L, Pelton M, Bodnarchuk M I et al. Spontaneous emission enhancement of colloidal perovskite nanocrystals by a photonic crystal cavity[J]. Applied Physics Letters, 111, 221104(2017).

    [25] Zhang Q L, Wang S W, Liu X X et al. Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity[J]. Nano Energy, 30, 481-487(2016).

    [26] Pourdavoud N, Wang S, Mayer A et al. Photonic nanostructures: Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites[J]. Advanced Materials, 29, 201770082(2017).

    [27] He Z, Chen B, Hua Y et al. CMOS compatible high-performance nanolasing based on perovskite-SiN hybrid integration[J]. Advanced Optical Materials, 8, 2000453(2020).

    [28] Tang H X, Wang Q M. Research progress of semiconductor photonic crystal lasers[J]. Semiconductor Optoelectronics, 26, 165-171, 192(2005).

    [29] Wu G Z, Zhang B S, Qu Y et al. Analysis on threshold characteristics in semiconductor microcavity lasers[J]. Semconductor Optoelectronics, 21, 325-327(2000).

    [30] Lin J, Liu X Y, Qu S N. Low threshold polymer lasers under optical pumping[J]. Chinese Journal of Luminescence, 40, 1434-1438(2019).

    [31] Wei Q, Li X J, Liang C et al. Recent progress in metal halide perovskite micro- and nanolasers[J]. Advanced Optical Materials, 7, 1900080(2019).

    [32] Yang G B, Liu X X, Li H H et al. Record-low continuous wavelength-pumped lasing thresholds using quantum wells via single-exciton optical gain mechanism[J]. Acta Chimica Sinica, 76, 633-638(2018).

    [33] Liu C F, Lu T T, Wang J B et al. Low threshold amplified spontaneous emission from efficient energy transfer in blends of conjugated polymers[J]. The Journal of Physical Chemistry C, 124, 8576-8583(2020).

    [34] Vogelbacher F, Sagmeister M, Kraft J et al. Slot-waveguide silicon nitride organic hybrid distributed feedback laser[J]. Scientific Reports, 9, 18438(2019).

    [35] Zuo Z Y, Ou C J, Ding Y J et al. Spiro-substitution effect of terfluorenes on amplified spontaneous emission and lasing behaviors[J]. Journal of Materials Chemistry C, 6, 4501-4507(2018).

    [36] Hvam J M. Direct recording of optical-gain spectra from ZnO[J]. Journal of Applied Physics, 49, 3124-3126(1978).

    [37] Shaklee K L, Nahory R E, Leheny R F. Optical gain in semiconductors[J]. Journal of Luminescence, 7, 284-309(1973).

    [38] Ellmers C, Girndt A, Hofmann M et al. Measurement and calculation of gain spectra for (GaIn)As/(AlGa)As single quantum well lasers[J]. Applied Physics Letters, 72, 1647-1649(1998).

    [39] Klimov V I, Mikhailovsky A A, Xu S et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 290, 314-317(2000).

    [40] Sarzała R P, Śpiewak P, Wasiak M. Influence of resonator length on performance of nitride TJ VCSEL[J]. IEEE Journal of Quantum Electronics, 55, 1-9(2019).

    [41] Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials, 26, 4653-4658(2014).

    [42] Akselrod G M, Young E R, Stone K W et al. Reduced lasing threshold from organic dye microcavities[J]. Physical Review B, 90, 035209(2014).

    [43] Shi Y Q, Li R X, Yu J H et al. Synthesis and stability of CsPbBr3 perovskite nanorods with high optical gain[J]. Chinese Journal of Lasers, 47, 0701024(2020).

    [44] Vu T K O, Cho I W, Oh J et al. Defect suppression and photoresponsivity enhancement in methylammonium lead halide perovskites by CdSe/ZnS quantum dots[J]. Journal of Colloid and Interface Science, 590, 19-27(2021).

    [45] Li Q Y, Liu Q L, Schaller R D et al. Reducing the optical gain threshold in two-dimensional CdSe nanoplatelets by the giant oscillator strength transition effect[J]. The Journal of Physical Chemistry Letters, 10, 1624-1632(2019).

    [46] Li J, Si J J, Gan L et al. Simple approach to improving the amplified spontaneous emission properties of perovskite films[J]. ACS Applied Materials & Interfaces, 8, 32978-32983(2016).

    [47] Chen K, Sheng Q Q, Han J et al. Study on photonic crystal and its application[J]. Optoelectronic Technology, 23, 16-23(2003).

    [48] Liu X Y, Li H B, Song C Y et al. Microcavity organic laser device under electrical pumping[J]. Optics Letters, 34, 503-505(2009).

    [49] Sreekanth K V, Krishna K H, De Luca A et al. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials[J]. Scientific Reports, 4, 6340(2014).

    [50] Dowling J P, Scalora M, Bloemer M J et al. The photonic band edge laser: a new approach to gain enhancement[J]. Journal of Applied Physics, 75, 1896-1899(1994).

    [51] Zhai T R, Zhang X P, Dou F. Microscopic excavation into the optically pumped polymer lasers based on distributed feedback. Chinese Physics Letters, 29, 104204(2012).

    [52] Ahn B H, Kang J H, Kim M K et al. One-dimensional parabolic-beam photonic crystal laser[J]. Optics Express, 18, 5654-5660(2010).

    [53] Li Y Z, Zhang J X, Huang D D et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 12, 987-992(2017).

    [54] Lin J, Hu Y S, Lü Y et al. Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping[J]. Science Bulletin, 62, 1637-1638(2017).

    [55] Huang C Y, Zou C, Mao C Y et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability[J]. ACS Photonics, 4, 2281-2289(2017).

    [56] Chang T C, Hashemi E, Hong K B et al. Electrically injected GaN-based vertical-cavity surface-emitting lasers with TiO2 high-index-contrast grating reflectors[J]. ACS Photonics, 7, 861-866(2020).

    [57] Kong J Y, Chu S, Huang J et al. Use of distributed Bragg reflectors to enhance Fabry-Pérot lasing in vertically aligned ZnO nanowires[J]. Applied Physics A, 110, 23-28(2013).

    [58] Han Y, Ng W K, Xue Y et al. Room temperature III-V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators[J]. Photonics Research, 7, 1081-1086(2019).

    [59] Tian C, Guo T, Zhao S Q et al. Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity[J]. RSC Advances, 9, 35984-35989(2019).

    [60] Lee S M, Gong S H, Kang J H et al. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector[J]. Optics Express, 23, 11023-11030(2015).

    [61] Wang Y, Li X, Song J et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 27, 7101-7108(2015).

    [62] Wang Y, Li X, Zhao X et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 16, 448-453(2016).

    [63] Ling Y, Tian Y, Wang X et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes[J]. Advanced Materials, 28, 8983-8989(2016).

    [64] Shang J, Cong C, Wang Z et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers[J]. Nature Communications, 8, 543(2017).

    [65] Gong J, Wang Y, Liu S et al. All-inorganic perovskite-based distributed feedback resonator[J]. Optics Express, 25, A1154-A1161(2017).

    [66] Pourdavoud N, Mayer A, Buchmüller M et al. Distributed feedback lasers based on MAPbBr3[J]. Advanced Materials Technologies, 3, 1700253(2018).

    [67] Yen H J, Liang P W, Chueh C C et al. Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability[J]. ACS Applied Materials & Interfaces, 8, 14513-14520(2016).

    [68] Li Z T, Moon J, Gharajeh A et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers[J]. ACS Nano, 12, 10968-10976(2018).

    [69] Niu N, Woolf A, Wang D Q et al. Ultra-low threshold gallium nitride photonic crystal nanobeam laser[J]. Applied Physics Letters, 106, 231104(2015).

    [70] Karnadi I, Son J, Kim J Y et al. A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation[J]. Optics Express, 22, 12115-12121(2014).

    [71] Huang Z, Cui K, Li Y et al. Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals[J]. Scientific Reports, 5, 15964(2015).

    [72] Notomi M, Kuramochi E, Taniyama H. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Optics Express, 16, 11095-11102(2008).

    [73] Jagsch S T, Trivino N V, Lohof F et al. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities[J]. Nature Communications, 9, 564(2018).

    [74] Fong C F, Yin Y, Chen Y et al. Silicon nitride nanobeam enhanced emission from all-inorganic perovskite nanocrystals[J]. Optics Express, 27, 18673-18682(2019).

    [75] Chen Y, Ryou A, Friedfeld M R et al. Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities[J]. Nano Letters, 18, 6404-6410(2018).

    [76] Cha H, Bae S, Lee M et al. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain[J]. Applied Physics Letters, 108, 181104(2016).

    [77] Ryu H Y, Kim S H, Park H G et al. Two-dimensional square lattice photonic-bandgap single-cell laser[J]. Proceedings of SPIE, 4655, 173-180(2002).

    [78] Hwang M S, Kim H R, Kim K H et al. Switching of photonic crystal lasers by graphene[J]. Nano Letters, 17, 1892-1898(2017).

    [79] Peng Y S, Ye X L, Xu B et al. Fabrication and luminescence characterization of two-dimensional GaAs-based photonic crystal nanocavities[J]. Acta Physica Sinica, 59, 7073-7077(2010).

    [80] Akahane Y, Asano T, Song B S et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 425, 944-947(2003).

    [81] Park H G, Kim S H, Kwon S H et al. Electrically driven single-cell photonic crystal laser[J]. Science, 305, 1444-1447(2004).

    [82] Goldys E M, Deng W, Calander N P et al. Nanoscale plasmonic resonators with high Purcell factor: spontaneous and stimulated emission[J]. Proceedings of SPIE, 7909, 79090H(2011).

    [83] Harbers R, Strasser P, Caimi D et al. Enhanced feedback in organic photonic-crystal lasers[J]. Applied Physics Letters, 87, 151121(2005).

    [84] Lu H Y, Tong C Z, Wang Z Y et al. Research advancement on band-edge mode photonic crystal surface-emitting semiconductor laser[J]. Chinese Journal of Lasers, 47, 0701014(2020).

    [85] Wu S F, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).

    [86] Xiong Y F, Umeda T, Zhang X Y et al. Photonic crystal circular-defect microcavity laser designed for wavelength division multiplexing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-7(2018).

    [87] Fu Y L, Zhai T R. Distributed feedback organic lasing in photonic crystals[J]. Frontiers of Optoelectronics, 13, 18-34(2020).

    [88] Ding T, Liu Z F, Song K. Preparation of 3D photonic crystals[J]. Progress in Chemistry, 20, 1283-1293(2008).

    [89] Shkunov M N, Vardeny Z V, DeLong M C et al. Tunable, gap-state lasing in switchable directions for opal photonic crystals[J]. Advanced Functional Materials, 12, 21-26(2002).

    [90] Schünemann S, Brittman S, Chen K et al. Halide perovskite 3D photonic crystals for distributed feedback lasers[J]. ACS Photonics, 4, 2522-2528(2017).

    [91] Teh L K, Wong C C, Yang H Y et al. Lasing in electrodeposited ZnO inverse opal[J]. Applied Physics Letters, 91, 161116(2007).

    [92] Strauf S. Lasing woodpiles[J]. Nature Photonics, 5, 72-74(2011).

    [93] Sanders J V. Colour of precious opal[J]. Nature, 204, 1151-1153(1964).

    [94] Shi L T, Jin F, Zheng M L et al. Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer[J]. Physical Chemistry Chemical Physics, 18, 5306-5315(2016).

    [95] Zhou X, Li M, Wang K et al. Strong photonic-band-gap effect on the spontaneous emission in 3D lead halide perovskite photonic crystals[J]. Chemphyschem, 19, 2101-2106(2018).

    [96] Stranks S D, Wood S M, Wojciechowski K et al. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector[J]. Nano Letters, 15, 4935-4941(2015).

    [97] Chen S, Zhang C, Lee J et al. High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers[J]. Advanced Materials, 29, 1604781(2017).

    [98] Tian C, Zhao S Q, Guo T et al. Deep-blue DBR laser at room temperature from single-crystalline perovskite thin film[J]. Optical Materials, 107, 110130(2020).

    [99] Sun S, Xiao S M, Song Q H. Distributed feedback laser based on single crystal perovskite[J]. Journal of Physics: Conference Series, 844, 012022(2017).

    [100] Ryu H Y, Kwon S H, Lee Y J et al. Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs[J]. Applied Physics Letters, 80, 3476-3478(2002).

    [101] Chen S T, Nurmikko A. Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates[J]. ACS Photonics, 4, 2486-2494(2017).

    [102] Jeong K Y, No Y S, Hwang Y et al. Electrically driven nanobeam laser[J]. Nature Communications, 4, 2822(2013).

    [103] Reilly K J, Kalapala A, Yeom S et al. Epitaxial regrowth and hole shape engineering for photonic crystal surface emitting lasers (PCSELs)[J]. Journal of Crystal Growth, 535, 125531(2020).

    [104] Xu P P, Shi Y C. High Q/V hybrid plasmonic photonic crystal nanobeam cavity: towards low threshold nanolasers application[J]. Optics Communications, 311, 234-238(2013).

    [105] Banihashemi M, Ahmadi V. Effects of air hole numbers around nanocavity in photonic crystal quantum dot lasers[C], 181-184(2014).

    [106] Xiong Y F, Ye H Q, Umeda T et al. Photonic crystal circular defect (CirD) laser[J]. Photonics, 6, 54(2019).

    [107] Li G H, Chen K Q, Cui Y X et al. Stability of perovskite light sources: status and challenges[J]. Advanced Optical Materials, 8, 1902012(2020).

    [108] Yu J C, Kim D W, Kim D B et al. Improving the stability and performance of perovskite light-emitting diodes by thermal annealing treatment[J]. Advanced Materials, 28, 6906-6913(2016).

    [109] Wu C, Zou Y T, Wu T et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment[J]. Advanced Functional Materials, 27, 1700338(2017).

    [110] Xiao Z G, Kerner R A, Zhao L F et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 11, 108-115(2017).

    [111] Hwang I, Jeong I, Lee J et al. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation[J]. ACS Applied Materials & Interfaces, 7, 17330-17336(2015).

    [112] Yu H R, Cheng X, Wang Y L et al. Waterproof perovskite-hexagonal boron nitride hybrid nanolasers with low lasing thresholds and high operating temperature[J]. ACS Photonics, 5, 4520-4528(2018).

    Bolin Zhou, Guohui Li, Jianhong Wu, Rong Wen, Huihui Pi, Yuying Hao, Yanxia Cui. Perovskite Photonic Crystal Laser with Low Threshold[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500005
    Download Citation