• Journal of Inorganic Materials
  • Vol. 38, Issue 2, 184 (2023)
Jingwei SUN*, Honglei WANG, Chuhan SUN, Xingui ZHOU, and Xiaoyu JI
DOI: 10.15541/jim20220553 Cite this Article
Jingwei SUN, Honglei WANG, Chuhan SUN, Xingui ZHOU, Xiaoyu JI. Effects of Carbon Sources on Structure and Properties of TaC Ceramic Powder Prepared by Polymer Derived Ceramics[J]. Journal of Inorganic Materials, 2023, 38(2): 184 Copy Citation Text show less
References

[2] J H PEREPEZKO. The hotter the engine, the better. Science, 1068(2009). https://www.science.org/doi/10.1126/science.1179327

[3] W G FAHRENHOLTZ, G E HILMAS. Ultra-high temperature ceramics: materials for extreme environments. Scripta Materialia, 94(2017). https://linkinghub.elsevier.com/retrieve/pii/S1359646216305139

[4] N P PADTURE. Advanced structural ceramics in aerospace propulsion. Nature Materials, 15, 804(2016).

[5] J JAKUBOWICZ, G ADAMEK, M SOPATA et al. Microstructure and electrochemical properties of refractory nanocrystalline tantalum-based alloys. International Journal of Electrochemical Science, 1956(2018).

[7] P XIAO, Y L ZHU, S WANG et al. Research Progress on the Preparation and Characterization of Ultra Refractory TaxHf1-xC solid solution ceramics. Journal of Inorganic Materials, 685(2021). http://www.jim.org.cn/EN/10.15541/jim20200440

[8] S L WANG, L MA, J L MEAD et al. Catalyst-free synthesis and mechanical characterization of TaC nanowires. Science China (Physics, Mechanics & Astronomy), 47(2021).

[10] Y LU, F H CHEN, P F AN et al. Polymer precursor synthesis of TaC-SiC ultrahigh temperature ceramic nanocomposites. Royal Society of Chemistry, 88770(2016).

[11] H PU, Y R NIU, X B ZHENG, et al. Ablation of vacuum plasma sprayed TaC-based composite coatings. Ceramics International, 11387(2015). https://linkinghub.elsevier.com/retrieve/pii/S027288421501041X

[12] Y R NIU, H PU, L P HUANG et al. Microstructure and ablation property of TaC-SiC composite coatings. In Key Engineering Materials, Trans Tech Publications Ltd, 535(2016). https://www.scientific.net/KEM.697.535

[13] J H PENG, E TIKHONOV. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C system: a first-principles study. Journal of Inorganic Materials, 51(2022).

[14] L WALTER, S FABIO. Ti(C, N)-based cermets: critical review of achievements and recent developments. Solid State Phenom, 53(2018). https://www.scientific.net/SSP.274.53

[15] Z J LI, C L ZHU, B J CAI et al. Effect of TiB2 content on the microstructure and mechanical properties of Ti(C, N)-TiB2-FeCoCrNiAl high-entropy alloys composite cermets. Journal of the Ceramic Society of Japan, 66(2020). https://www.jstage.jst.go.jp/article/jcersj2/128/2/128_19154/_article

[16] E SHANKAR, K PRABU S B,. Effect of nano-TiB2 addition on the microstructure, mechanical properties and machining performance of TiCN cermet. Journal of the Australian Ceramic Society, 565(2018). https://doi.org/10.1007/s41779-018-0185-4

[17] R Q PAN, G Q CHEN, X M YU et al. Densification, microstructure and mechanical properties of Ta4HfC5-based ceramics obtained from synthesized nanoscale powder. Journal of the European Ceramic Society, 2247(2021). https://linkinghub.elsevier.com/retrieve/pii/S0955221920309043

[18] X Y XU, Y ZHENG, Y J ZHAO et al. Influence of TaC content on microstructure and mechanical performance of Ti(C,N)-based cermets fabricated by mechanical activation and subsequent in situ carbothermal reduction. Ceramics International, 3826(2022). https://linkinghub.elsevier.com/retrieve/pii/S0272884221033083

[19] J ZHANG, S WANG, W LI et al. Understanding the oxidation behavior of Ta-Hf-C ternary ceramics at high temperature. Corrosion Science, 108348(2020). https://linkinghub.elsevier.com/retrieve/pii/S0010938X19313496

[20] C Q FANG, B Y HUANG, X YANG et al. Effects of LaB6 on composition, microstructure and ablation property of the HfC- TaC-SiC doped C/C composites prepared by precursor infiltration and pyrolysis. Corrosion Science, 109347(2021). https://linkinghub.elsevier.com/retrieve/pii/S0010938X2100113X

[21] B Z WANG, D X LI, Z H YANG et al. Study on oxidation resistance and oxidative damage mechanism of SiBCN-Ta4HfC5 composite ceramics. Corrosion Science, 110049(2022). https://linkinghub.elsevier.com/retrieve/pii/S0010938X21008179

[22] Y LU, S Y ZHU, X Y WANG et al. High temperature tribological behavior of polymer-derived Ta4HfC5 nanoceramics. Tribology International, 106859(2021). https://linkinghub.elsevier.com/retrieve/pii/S0301679X21000074

[23] X R ZHAO, M X ZHANG, D W ZUO et al. Ti(C, N)-based cermet with different TaC/(TaC+WC) weight ratio by in-situ reactive hot pressing: microstructure and mechanical properties. Materials Today Communications, 101661(2020). https://linkinghub.elsevier.com/retrieve/pii/S2352492820326726

[24] P COLOMBO, G MERA, R RIEDEL et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. Journal of the American Ceramic Society, 1805(2010).

[25] T CAI, W F QIU, T ZHAO et al. Polymer precursor-derived HfCSiC ultrahigh-temperature ceramic nanocomposites. Journal of the American Ceramic Society, 20(2018). https://onlinelibrary.wiley.com/doi/10.1111/jace.15192

[26] F Li, Y Lu, X G Wang et al. Liquid precursor-derived high- entropy carbide nanopowders. Ceramics International, 22437(2019). https://linkinghub.elsevier.com/retrieve/pii/S0272884219320668

[27] Y N SUN, L YE, W Y ZHAO et al. Synthesis of high entropy carbide nano powders via liquid polymer precursor route. Journal of Inorganic Materials, 393(2021). http://www.jim.org.cn/EN/10.15541/jim20200391

[28] J CHENG, Z J DONG, H ZHU et al. Synthesis and ceramisation of organometallic precursors for Ta4HfC5 and TaHfC2 ultra-fine powders through a facile one-pot reaction. Journal of Alloys and Compounds, 162989(2022). https://linkinghub.elsevier.com/retrieve/pii/S0925838821043991

[29] Y LU, Y A SUN, T Z ZHANG et al. Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: synthesis, microstructure and properties. Journal of the European Ceramic Society, 205(2019). https://linkinghub.elsevier.com/retrieve/pii/S0955221918306290

[30] J M JIANG, S WANG, W LI. Preparation and characterization of ultrahigh-temperature ternary ceramics Ta4HfC5. Journal of the American Ceramic Society, 3198(2016). https://onlinelibrary.wiley.com/doi/10.1111/jace.14436

[31] J ZHANG, S WANG, W LI. Nano-scale 1TaC-3HfC solid solution powder synthesized using a solvothermal method and its densification. Ceramics International, 1455(2019). https://linkinghub.elsevier.com/retrieve/pii/S0272884218327731

[32] Y A SUN, C M YANG, Y LU et al. Transformation of metallic polymer precursor into nanosized HfTaC2 ceramics. Ceramics International, 6022(2020). https://linkinghub.elsevier.com/retrieve/pii/S0272884219332481

[33] M A PIMENTA, G DRESSELHAUS, M S DRESSELHAUS et al. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 1276(2007).

[34] MARTINS E H FERREIRA, V O MOUTINHO, F STAVALE et al. Evolution of the Raman spectra from single-, few-, and many- layer graphene with increasing disorder. Physical Review B, 125429(2010). https://link.aps.org/doi/10.1103/PhysRevB.82.125429

[36] S GHAFFARI, M FAGHIHI-SANI, F GOLESTANI-FARD et al. Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2. Ceramics International, 39:, 1985(2013). https://linkinghub.elsevier.com/retrieve/pii/S0272884212007973

[37] C OMAR, G SALVATORE, IN A NASR et al. Sintering behaviour, solid solution formation and characterization of TaC, HfC and TaC-HfC fabricated by spark plasma sintering. Journal of the European Ceramic Society, 1539(2016). https://linkinghub.elsevier.com/retrieve/pii/S0955221916300607

[39] E I PATSERA, V V KURBATKINA, E A LEVASHOV et al. Research into the possibility of producing single-phase tantalum- hafnium carbide by SHS.. Russian Journal of Non-Ferrous Metals, 576(2018). https://doi.org/10.3103/S1067821218050127

[40] V KURBATKINA, E PATSERA, E LEVASHOV et al. Self- propagating high-temperature synthesis of single-phase binary tantalum-hafnium carbide (Ta, Hf)C and its consolidation by hot pressing and spark plasma sintering. Ceramics International, 4320(2018). https://linkinghub.elsevier.com/retrieve/pii/S0272884217327189

Jingwei SUN, Honglei WANG, Chuhan SUN, Xingui ZHOU, Xiaoyu JI. Effects of Carbon Sources on Structure and Properties of TaC Ceramic Powder Prepared by Polymer Derived Ceramics[J]. Journal of Inorganic Materials, 2023, 38(2): 184
Download Citation