• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 121102 (2018)
Lu Song1 and Yuanhua Feng2、*
Author Affiliations
  • 1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • 2 College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    DOI: 10.3788/LOP55.121102 Cite this Article Set citation alerts
    Lu Song, Yuanhua Feng. Ultrafast Flow Cytometric Quantitative Phase Imaging System Based on Optical Coherent Detection Technology[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121102 Copy Citation Text show less
    References

    [1] Xie X M, Xu Y. Flow cytometry in biotechnology[J]. China Biotechnology, 23, 100-104(2003).

    [2] Yang R, Zou M Q. New advances in developing flow cytometery[J]. Journal of Instrumental Analysis, 23, 124-128(2004).

    [3] Luo D, Lu Y F, Jiao G H et al. Research progress of optofluidic flow cytometry[J]. Laser & Optoelectronics Progress, 50, 120004(2013).

    [4] Yang P, Wei D, Pang K et al. Progress in detection of circulating tumor cell by in vivo photoacoustic flow cytometry[J]. Laser & Optoelectronics Progress, 54, 090001(2017).

    [5] Zhao S T, Wu X D, Wang C et al. Principles, applications and latest developments of flow cytometer[J]. Progress in Modern Biomedicine, 11, 4378-4381(2011).

    [6] Zhang Y. Study of the fluid system design of the diffraction imaging flow cytometer[D]. Tianjin: Tianjin University(2012).

    [7] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000008000005000197000001&idtype=cvips&gifs=Yes

    [8] Chen H W, Xing F J, Wang Y X et al. Ultra-fast surface microscopic imaging technique[J]. Journal of Data Acquisition & Processing, 29, 895-900(2014).

    [9] Jiao X Y. The fundamental research of serial time-encoded dynamic imaging system[D]. Beijing: Beijing University of Chemical Technology(2016).

    [10] Goda K, Ayazi A, Gossett D R et al. High-throughput single-microparticle imaging flow analyzer[J]. Proceedings of the National Academy of Sciences, 109, 11630-11635(2012). http://www.jstor.org/stable/41685128

    [11] Wong T T W, Lau A K S, Ho K K Y et al. . Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow[J]. Scientific Reports, 4, 3656(2014). http://www.nature.com/doifinder/10.1038/srep03656

    [12] Lau A K S, Wong T T W, Ho K K Y et al. . Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 μm[J]. Journal of Biomedical Optics, 19, 076001(2014). http://www.opticsinfobase.org/abstract.cfm?uri=NTM-2013-NW1B.4

    [13] Lau A K S, Shum H C, Wong K K Y et al. . Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry[J]. Lab on a Chip, 16, 1743-1756(2016). http://www.ncbi.nlm.nih.gov/pubmed/27099993

    [14] Lai Q T K, Lee K C M, Tang A H L et al. . High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton[J]. Optics Express, 24, 28170-28184(2016). http://europepmc.org/abstract/MED/27958529

    [15] Ugawa M, Lei C, Nozawa T et al. High-throughput optofluidic particle profiling with morphological and chemical specificity[J]. Optics Letters, 40, 4803-4806(2015). http://www.ncbi.nlm.nih.gov/pubmed/26469624

    [16] Lei C, Ito T, Ugawa M et al. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis[J]. Biomedical Optics Express, 7, 2703-2708(2016). http://www.ncbi.nlm.nih.gov/pubmed/27446699

    [17] Kaminow I, Li T, Willner A E. Optical fiber telecommunications VB: systems and networks[M]. San Diego: Elsevier(2010).

    [18] Ip E, Lau A P, Barros D J et al. Coherent detection in optical fiber systems[J]. Optics Express, 16, 753-791(2008). http://www.ncbi.nlm.nih.gov/pubmed/18542153

    [19] Liu H Y, Zhang Y G, Ai Y et al. Design and implementation of balance detector used in coherent optical communication system[J]. Laser & Optoelectronics Progress, 51, 070601(2014).

    [20] Liu R, Wu G L, Su F R et al. Effect of path asymmetry on performance of optical analog-to-digital conversion system based on balanced detection[J]. Chinese Journal of Lasers, 44, 0506001(2017).

    [21] Yu J, Huang M L, Zou Y Z et al. Phase noise cancellation for coherent optical OFDM system based on polarization diversity[J]. Acta Optica Sinica, 36, 0806001(2016).

    [22] Tsia K K, Goda K, Capewell D et al. Performance of serial time-encoded amplified microscope[J]. Optics Express, 18, 10016-10028(2010). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5499956

    [23] Wang L V, Wu H. Biomedical optics: principles and imaging[M]. Hoboken: John Wiley & Sons(2012).

    [24] Lau K. Quantitative time-stretch imaging--towards big-data bioassay[D]. Hong Kong: The University of Hong Kong(2015).

    Lu Song, Yuanhua Feng. Ultrafast Flow Cytometric Quantitative Phase Imaging System Based on Optical Coherent Detection Technology[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121102
    Download Citation