• Matter and Radiation at Extremes
  • Vol. 7, Issue 6, 065903 (2022)
A. Tentori*, A. Colaïtis, and D. Batani
Author Affiliations
  • Centre Lasers Intenses et Applications, CELIA, Université Bordeaux CEA-CNRS, UMR 5107, F-33405 Talence, France
  • show less
    DOI: 10.1063/5.0103632 Cite this Article
    A. Tentori, A. Colaïtis, D. Batani. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II[J]. Matter and Radiation at Extremes, 2022, 7(6): 065903 Copy Citation Text show less
    References

    [1] J.Nuckolls, G.Zimmerman, L.Wood, A.Thiessen. Laser compression of matter to super high densities: Thermonuclear (CTR) applications. Nature, 239, 139-142(1972).

    [2] N. G.Basov, G. V.Sklizkov, O. N.Krokhin. Heating of laser plasmas for thermonuclear fusion. Laser Interact. Relat. Plasma Phenom., 2, 398(1972).

    [3] V. A.Shcherbakov. Ignition of a laser fusion target by a focusing shock wave. Sov. J. Plasma Phys, 9, 240(1983).

    [4] C. D.Zhou, W.Theobald, A. A.Solodov, R.Betti, L. J.Perkins, K. S.Anderson. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).

    [5] G.Schurtz, B.Canaud, S.Atzeni, A. J.Schmitt, X.Ribeyre, L. J.Perkins, R.Betti. Shock ignition of thermonuclear fuel: Principles and modelling. Nucl. Fusion, 54, 054008(2014).

    [6] B. B.Afeyan, E. A.Williams. Stimulated Raman sidescattering with the effects of oblique incidence. Phys. Fluids, 28, 3397-3408(1985).

    [7] M. N.Rosenbluth, C. S.Liu. Parametric decay of electromagnetic waves into two plasmons and its consequences. Phys. Fluids, 19, 967-971(1976).

    [8] W. L.Kruer. The Physics of Laser Plasma Interactions Reprint(2003).

    [9] S.Borodziuk, M.Kalal, T.Pisarczyk, E.Krousky, A.Kasperczuk, M.Pfeifer, J.Skala, B.Kralikova, J.Limpouch, K.Masek, S.Guskov, K.Rohlena. Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse. Quantum Electron., 34, 989-1003(2004).

    [10] S.Gus’kov, X.Ribeyre, V.Tikhonchuk, J.-L.Feugeas, P.Nicola?, M.Touati. Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett., 109, 255004(2012).

    [11] A.Kasperczuk, T.Chodukowski, S. Y.Guskov, Z.Kalinowska, T.Pisarczyk, O.Renner, E.Krousky, N.Demchenko, M.Smid, M.Pfeiferet?al.. Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2. Laser Part. Beams, 32, 177-195(2014).

    [12] V.Tikhonchuk, F.Barbato, J.Feugeas, G.Boutoux, L.Antonelli, D.Batani, D.Mancelli, J.Santos, G.Folpini, A.Colaitiset?al.. Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion. Nucl. Fusion, 59, 032012(2018).

    [13] J. A.Frenje, A.Casner, R.Betti, J.Trela, W.Theobald, J. A.Delettrez, X.Ribeyre, K. S.Anderson, V. Y.Glebov, D.Bataniet?al.. The control of hot-electron preheat in shock-ignition implosions. Phys. Plasmas, 25, 052707(2018).

    [14] L.Antonelli, D.Mancelli, A.Tentori, J.Trela, P.Nicola?, D.Batani, V.Tikhonchuk, G.Boutoux, F.Barbato, S.Atzeni. Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2. Phys. Plasmas, 26, 112708(2019).

    [15] L.Jacquet, A.Casner, G.Boutoux, S.Brygoo, C.Rousseaux, E. L.Bel, S. D.Baton, M.Koenig, D.Batani, A.Cola?tis et al. Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition. High Energy Density Phys, 36, 100796(2020).

    [16] K.Anderson, E.Le Bel, A.Casner, D.Raffestin, W.Theobald, M.Wei, A.Tentori, J.Trela, A.Ruocco, A.Colaitiset?al.. Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion. Phys. Plasmas, 28, 103302(2021).

    [17] D.Tentori, A.Cola?tis, A.Batani. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion: Part I. Matter Radiat. Extremes, 7, 065902(2022).

    [18] J.Allison, H.Araujo, D.Axen, G.Barrand, M.Asai, K.Amako, J.Apostolakis, S.Agostinelli, P.Arce, S.Banerjeeet?al.. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).

    [19] X.Ribeyre, A.Cola?tis, P.Nicola?, G.Duchateau, V.Tikhonchuk, E.Le Bel. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions. Phys. Plasmas, 23, 072703(2016).

    [20] P.-H.Maire, J.Breil, S.Galera. Multi-material ALE computation in inertial confinement fusion code CHIC. Comput. Fluids, 46, 161(2011).

    [21] C.Moller. Zur theorie des durchgangs schneller elektronen durch materie. Ann. Phys., 406, 531-585(1932).

    [22] R. H.Dalitz, R. E.Peierls. On higher born approximations in potential scattering. Proc. R. Soc. London, Ser. A, 206, 509-520(1951).

    [23] J. R.Davies, A.Schiavi, S.Atzeni. Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition. Plasma Phys. Controlled Fusion, 51, 015016(2008).

    [24] D. C.Joy. Monte Carlo Modeling for Electron Microscopy and Microanalysis(1995).

    [25] P.Andreo, A.Brahme. Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures. Radiat. Res., 100, 16-29(1984).

    [26] K.Heinrich, E. R.Krefting, L.Reimer, D. N. H.Yakowitz. The effect of scattering models on the results of Monte Carlo calculations. Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, 45-60(1976).

    [27] J. M.Fernández-Varea, R.Mayol, J.Baró, F.Salvat. On the theory and simulation of multiple elastic scattering of electrons. Nucl. Instrum. Methods Phys. Res., Sect. B, 73, 447-473(1993).

    [28] PENELOPE 2018: A code system for Monte Carlo simulation of electronand photon transport(2019).

    [29] S.Goudsmit, J. L.Saunderson. Multiple scattering of electrons. Phys. Rev., 57, 24-29(1940).

    [30] J. L.Saunderson, S.Goudsmit. Multiple scattering of electrons. II. Phys. Rev., 58, 36-42(1940).

    [31] H. W.Lewis. Multiple scattering in an infinite medium. Phys. Rev., 78, 526-529(1950).

    [32] A. A.Solodov, R.Betti. Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets. Phys. Plasmas, 15, 042707(2008).

    [33] J. D.Jackson. Classical Electrodynamics(1975).

    [34] R. M.More. Processes in non ideal plasmas, 135-215(1986).

    [35] G.Wentzel. Zwei Bemerkungen über die Zerstreuung korpuskularer Strahlen als Beugungserscheinung. Z. Phys., 40, 590-593(1926).

    [36] J. A.Dennis, H. H.Anderson, D.Powers, M. J.Berger, J. E.Turner, M.Inokuti, H.Bichsel, S. M.Seltzer. Report 37.

    [37] Estar database.

    [38] M.?míd, L.Antonelli, O.Renner, D.Batani. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Controlled Fusion, 58, 075007(2016).

    [39] C.McGuffey, P. K.Patel, S. H.Glenzer, F. N.Beg, H.Sawada, T.D?ppner, O. L.Landen, C.Stoeckl, H. S.McLean, L. C.Jarrott, R. B.Stephens, C.Sorce, M. S.Wei, W.Theoboald, P. M.Nilson. Calibration and characterization of a highly efficient spectrometer in von Hamos geometry for 7-10 keV x-rays. Rev. Sci. Instrum., 88, 043110(2017).

    [40] D. E.Cullen, M. H.Chen, J.Rathkopf, J. H.Hubbell, J.Scofield, S. T.Perkins. Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL), Z = 1–100(1991).

    [41] X.Llovet, F.Salvat, C. J.Powell, A.Jablonski. Cross sections for inner-shell ionization by electron impact. J. Phys. Chem. Ref. Data, 43, 013102(2014).

    [42] P.Nicola?, A.Cola?tis, D.Batani, G.Duchateau, V.Tikhonchuk, L.Antonelli, X.Ribeyre, G.Boutoux, Y.Maheut. Coupled hydrodynamic model for laser-plasma interaction and hot electron generation. Phys. Rev. E, 92, 041101(2015).

    [43] C. D.Zhou, R.Betti. Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions. Phys. Plasmas, 14, 072703(2007).

    [44] L. A.Gizzi, L.Labate, S.Baton, P.Koester, A.Cola?tis, A.Casner, F.Baffigi, D.Batani, M.Koenig, G.Cristoforettiet?al.. Bremsstrahlung cannon design for shock ignition relevant regime. Rev. Sci. Instrum., 92, 013501(2021).

    [45] A.Tentori. Experimental and theoretical study of hot electrons in the context of the shock ignition approach to inertial confinement fusion(2022).

    A. Tentori, A. Colaïtis, D. Batani. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II[J]. Matter and Radiation at Extremes, 2022, 7(6): 065903
    Download Citation