• Photonics Research
  • Vol. 4, Issue 2, 0074 (2016)
Wei Gong1、2、3, Chengzhi Xiang1、*, Feiyue Mao1、2、3、4、5, Xin Ma1, and Ailin Liang1
Author Affiliations
  • 1State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Luoyu Road 129, Wuhan 430079, China
  • 2Collaborative Innovation Center for Geospatial Technology, Wuhan 430079, China
  • 3Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Wuhan 430068, China
  • 4School of Remote Sensing and Information Engineering, Wuhan University, Luoyu Road 129, Wuhan 430079, China
  • 5e-mail: maofeiyue@whu.edu.cn
  • show less
    DOI: 10.1364/prj.4.000074 Cite this Article Set citation alerts
    Wei Gong, Chengzhi Xiang, Feiyue Mao, Xin Ma, Ailin Liang. Wavelet modulus maxima method for on-line wavelength location of pulsed lidar in CO2 differential absorption lidar detection[J]. Photonics Research, 2016, 4(2): 0074 Copy Citation Text show less
    References

    [1] Climate Change. The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(2013).

    [2] A. D. Friend, W. Lucht, T. T. Rademacher, R. Keribin, R. Betts, P. Cadule, P. Ciais, D. B. Clark, R. Dankers, P. D. Falloon, A. Ito, R. Kahana, A. Kleidon, M. R. Lomas, K. Nishina, S. Ostberg, R. Pavlick, P. Peylin, S. Schaphoff, N. Vuichard, L. Warszawski, A. Wiltshire, F. I. Woodward. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl. Acad. Sci. USA, 111, 3280-3285(2014).

    [3] R. Pachauri, Core Writing, A. Reisinger. Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change(2007).

    [4] M. O. Andreae, C. D. Jones, P. M. Cox. Strong present-day aerosol cooling implies a hot future. Nature, 435, 1187-1190(2005).

    [5] J. Mao, S. R. Kawa. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt., 43, 914-927(2004).

    [6] J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, S. Biraud. Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus Ser. B, 62, 770-783(2010).

    [7] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, R. M. Law. Precision requirements for space-based XCO2 data. J. Geophys. Res., 112, D10314(2007).

    [8] F. Chevallier, S. Maksyutov, P. Bousquet, F. M. Bréon, R. Saito, Y. Yoshida, T. Yokota. On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations. Geophys. Res. Lett., 36, L19807(2009).

    [9] F. Gibert, P. H. Flamant, J. Cuesta, D. Bruneau. Vertical 2-μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere. J. Atmos. Ocean. Technol., 25, 1477-1497(2008).

    [10] F. Gibert, P. H. Flamant, D. Bruneau, C. Loth. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl. Opt., 45, 4448-4458(2006).

    [11] L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, C. Minopoli, A. Aiuppa. Volcanic CO2 detection with a DFM/OPA-based lidar. Opt. Lett., 40, 1034-1036(2015).

    [12] L. Fiorani, W. Saleh, M. Burton, A. Puiu, M. Queißer. Spectroscopic considerations on DIAL measurement of carbon dioxide in volcanic emissions. J. Optoelectron. Adv. Mater., 15, 317-325(2013).

    [13] U. N. Singh, J. Yu, M. Petros, T. Refaat, K. Reithmaier. Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 measurement. Proc. SPIE, 8872, 887209(2013).

    [14] P. P. Tans, I. Y. Fung, T. Takahashi. Observational contrains on the global atmospheric CO2 budget. Science, 247, 1431-1438(1990).

    [15] K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, M. A. Krainak. Frequency stabilization of distributed-feedback laser diodes at 1572  nm for lidar measurements of atmospheric carbon dioxide. Appl. Opt., 50, 1047-1056(2011).

    [16] S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, M. Nakajima. Development of 1.6 micron CW modulation ground-based DIAL system for CO2 monitoring. Proc. SPIE, 7153, 71530L(2008).

    [17] L. Fiorani, S. Santoro, S. Parracino, G. Maio, M. Del Franco, A. Aiuppa. Lidar detection of carbon dioxide in volcanic plumes. Proc. SPIE, 9535, 95350N(2015).

    [18] G. J. Koch, M. Petros, J. Yu, U. N. Singh. Precise wavelength control of a single-frequency pulsed Ho: Tm: YLF laser. Appl. Opt., 41, 1718-1721(2002).

    [19] T. S. Mang. Lasers and light sources for PDT: past, present and future. Photodiagn. Photodyn. Ther., 1, 43-48(2004).

    [20] F. P. Schäfer. Dye Lasers(2013).

    [21] E. Durieux, L. Fiorani, B. Calpini, M. Flamm, L. Jaquet, H. Van den Bergh. Tropospheric ozone measurements over the Great Athens Area during the MEDCAPHOT-TRACE campaign with a new shot-per-shot DIAL instrument: experimental system and results. Atmos. Environ., 32, 2141-2150(1998).

    [22] X. Chengzhi, G. Wei, M. Xin, C. Xuewu. A method to eliminate the backlash error of tunable laser. Acta Opt. Sin., 34, 161-169(2014).

    [23] Q. Sun, Y. Tang. Singularity analysis using continuous wavelet transform for bearing fault diagnosis. Mech. Syst. Signal Process., 16, 1025-1041(2002).

    [24] C.-L. Tu, W.-L. Hwang, J. Ho. Analysis of singularities from modulus maxima of complex wavelets. IEEE Trans. Inf. Theory, 51, 1049-1062(2005).

    [25] A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, F. Späth. Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar. Proc. SPIE, 7475, 74750L(2009).

    [26] J. Lawrence, R. Leigh, P. Monks. The impact of surface reflectance variability on total column differential absorption LiDAR measurements of atmospheric CO2. Atmos. Meas. Tech. Discuss., 3, 147-184(2010).

    [27] A. Amediek, A. Fix, G. Ehret, J. Caron, Y. Durand. Airborne lidar reflectance measurements at 1.57  μm in support of the A-SCOPE mission for atmospheric CO2. Atmos. Meas. Tech. Discuss., 2, 755-772(2009).

    [28] W. Gong, A. Liang, G. Han, X. Ma, C. Xiang. Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile. Photon. Res., 3, 146-152(2015).

    [29] G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B, 90, 593-608(2008).

    [30] G. Han, W. Gong, H. Lin, X. Ma, C. Xiang. On-line wavelength calibration of pulsed laser for CO2 DIAL sensing. Appl. Phys. B, 117, 1041-1053(2014).

    [31] Y. Sheng, D. Roberge, H. H. Szu. Optical wavelet transform. Opt. Eng., 31, 1840-1845(1992).

    [32] S. Pal, M. Lopez, M. Schmidt, M. Ramonet, F. Gibert, I. Xueref-Remy, P. Ciais. Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France. J. Geophys. Res., 120, 623-636(2015).

    [33] C. K. Chui. An Introduction to Wavelets(2014).

    [34] D. Bernier, K. F. Taylor. Wavelets from square-integrable representations. SIAM J. Math. Anal., 27, 594-608(1996).

    [35] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 36, 961-1005(1990).

    [36] Z. Peng, Y. He, Z. Chen, F. Chu. Identification of the shaft orbit for rotating machines using wavelet modulus maxima. Mech. Syst. Signal Process., 16, 623-635(2002).

    [37] X. Wang, R. S. Istepanian, Y. H. Song. Application of wavelet modulus maxima in microarray spots recognition. IEEE Trans. Nanobiosci., 2, 190-192(2003).

    [38] J.-F. Muzy, E. Bacry, A. Arneodo. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E, 47, 875-884(1993).

    [39] S. Mallat, A. Wavelet. Tour of Signal Processing(1999).

    [40] G. Han, W. Gong, H. Lin, X. Ma, Z. Xiang. Study on influences of atmospheric factors on vertical CO2 profile retrieving from ground-based DIAL at 1.6  μm. IEEE Trans. Geosci. Remote Sens., 53, 3221-3234(2014).

    [41] L. Rothman, I. Gordon, R. Barber, H. Dothe, R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, J. Tennyson. HITEMP, the high-temperature molecular spectroscopic database. J. Quantum Spectrosc. Radiat. Transfer, 111, 2139-2150(2010).

    [42] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. ChrisBenner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. LeRoy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, G. Wagner. The HITRAN2012 molecular spectroscopic database. J. Quantum Spectrosc. Radiat. Transfer, 130, 4-50(2013).

    [43] J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, A. Yu, A. Amediek, Y. Choi, E. V. Browell. A lidar approach to measure CO2 concentrations from space for the ASCENDS Mission. Proc. SPIE, 7832, 78320D(2010).

    [44] W. Gong, X. Ma, G. Han, C. Xiang, A. Liang, W. Fu. Method for wavelength stabilization of pulsed difference frequency laser at 1572  nm for CO2 detection lidar. Opt. Express, 23, 6151-6170(2015).

    Wei Gong, Chengzhi Xiang, Feiyue Mao, Xin Ma, Ailin Liang. Wavelet modulus maxima method for on-line wavelength location of pulsed lidar in CO2 differential absorption lidar detection[J]. Photonics Research, 2016, 4(2): 0074
    Download Citation