• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3000051 (2021)
Zhao Xudong1, Xu Yinsheng1、2, Zhang Xianghua1, and Zhao Xiujian1
Author Affiliations
  • 1State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan , Hubei 430070, China
  • 2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou , Guangdong 510640, China
  • show less
    DOI: 10.3788/LOP202158.0300005 Cite this Article Set citation alerts
    Zhao Xudong, Xu Yinsheng, Zhang Xianghua, Zhao Xiujian. Research Advancements in Optical Fiber Evanescent Wave Biochemical Sensing[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3000051 Copy Citation Text show less
    References

    [1] Xiao Z Y, Luo W Y, Wen J X et al. Defect induced by heated treatment in silica fiber material. ICMMSE 2011, 304, 160-164(2011).

    [2] Paul P H, Kychakoff G. Fiber-optic evanescent field absorption sensor. Applied Physics Letters, 51, 12-14(1987).

    [3] Yin D M, Dai S X, Wang X S et al. Research progress of infrared chalcogenide glass fibers in sensing fields. Laser & Optoelectronics Progress, 50, 020010(2013).

    [4] Ahmad M, Hench L L. Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosensors and Bioelectronics, 20, 1312-1319(2005).

    [5] Shriver-Lake L C, Anderson G P, Golden J P et al. The effect of tapering the optical fiber on evanescent wave measurements. Analytical Letters, 25, 1183-1199(1992).

    [6] Gupta B D, Dodeja H, Tomar A K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Optical and Quantum Electronics, 28, 1629-1639(1996).

    [7] Khijwania S K, Srinivasan K L, Singh J P. An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity. Sensors and Actuators B: Chemical, 104, 217-222(2005).

    [8] Russell P S J. Photonic-crystal fibers. Journal of Lightwave Technology, 24, 4729-4749(2006).

    [9] Wang W, Hou L T. Present situation and future development in photonic crystal fibers. Laser & Optoelectronics Progress, 45, 43-58(2008).

    [10] Wang C, Sun F J, Fu Z Y et al. Research progresses on theory and experiments of photonic crystal micronano sensing technology. Acta Optica Sinica, 38, 0328003(2018).

    [11] Peng X L, Li B, Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating. Laser & Optoelectronics Progress, 55, 120010(2018).

    [12] Yuan L B. Multi-core fiber characteristics and its sensing applications. Laser & Optoelectronics Progress, 56, 170612(2019).

    [13] Nikodem M, Krzempek K, Dudzik G et al. Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm. Optics Express, 26, 21843-21848(2018).

    [14] Wang L L, Ma W Q, Zhang P Q et al. Mid-infrared gas detection using a chalcogenide suspended-core fiber. Journal of Lightwave Technology, 37, 5193-5198(2019).

    [15] Mustapha Kamil Y, Abu Bakar M H, Mustapa M A et al. Label-free Dengue E protein detection using a functionalized tapered optical fiber sensor. Sensors and Actuators B: Chemical, 257, 820-828(2018).

    [16] Kamil Y M, Al-Rekabi S H, Yaacob M H et al. Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor. Scientific Reports, 9, 13483(2019).

    [17] Mustapa M A, Bakar M H A, Kamil Y M et al. Bio-functionalized tapered multimode fiber coated with dengue virus NS1 glycoprotein for label free detection of anti-dengue virus NS1 IgG antibody. IEEE Sensors Journal, 18, 4066-4072(2018).

    [18] Sun D D, Sun L P, Guo T et al. Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor. Journal of Lightwave Technology, 37, 2756-2761(2019).

    [19] Li X K, Zhang Y L, Xue B et al. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosensors and Bioelectronics, 92, 517-522(2017).

    [20] Yao B C, Wu Y, Webb D J et al. Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection. IEEE Photonics Technology Letters, 27, 2399-2402(2015).

    [21] Chiang C Y, Huang T T, Wang C H et al. Fiber optic nanogold-linked immunosorbent assay for rapid detection of procalcitonin at femtomolar concentration level. Biosensors and Bioelectronics, 151, 111871(2020).

    [22] Zhu X Y, Wang R Y, Xia K D et al. Nucleic acid functionalized fiber optic probes for sensing in evanescent wave: optimization and application. RSC Advances, 9, 2316-2324(2019).

    [23] Qiu H W, Gao S S, Chen P X et al. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film. Optics Communications, 366, 275-281(2016).

    [24] Komanec M, Nemecek T, Vidner P M et al. Structurally-modified tapered optical fiber sensors for long-term detection of liquids. Optical Fiber Technology, 47, 187-191(2019).

    [25] Xiong Y, Wang Q, Duan M et al. Real-time monitoring of azo dye interfacial adsorption at silica-water interface by total internal reflection-induced surface evanescent wave. Langmuir, 34, 7612-7623(2018).

    [26] Li B L, Li D R, Chen J H et al. Hollow core micro-fiber for optical wave guiding and microfluidic manipulation. Sensors and Actuators B: Chemical, 262, 953-957(2018).

    [27] Lü R, Li J, Hu H F et al. Miniature refractive index fiber sensor based on silica micro-tube and Au micro-sphere. Optical Materials, 72, 661-665(2017).

    [28] Yap S H K, Chan K K, Zhang G et al. Carbon dot-functionalized interferometric optical fiber sensor for detection of ferric ions in biological samples. ACS Applied Materials & Interfaces, 11, 28546-28553(2019).

    [29] Pan Z, Feng J, Hu X et al. High sensitivity fiber sensor for measurement of Cd2+concentration in aqueous solution based on reflective Mach-Zehnder interference with temperature calibration. Optics Express, 27, 32621-32629(2019).

    [30] Pathak A K, Chaudhary D K, Singh V K. Broad range and highly sensitive optical pH sensor based on hierarchical ZnO microflowers over tapered silica fiber. Sensors and Actuators A: Physical, 280, 399-405(2018).

    [31] Chen H, Liu Y M, Zou J Y et al. Research status and development trends of fiber optical technology for water quality monitoring. Laser & Optoelectronics Progress, 52, 030006(2015).

    [32] Fu H W, Wang Q Q, Ding J J et al. Fe2O3 nanotube coating micro-fiber interferometer for ammonia detection. Sensors and Actuators B: Chemical, 303, 127186(2020).

    [33] Korposh S, Kodaira S, Selyanchyn R et al. Porphyrin-nanoassembled fiber-optic gas sensor fabrication: Optimization of parameters for sensitive ammonia gas detection. Optics & Laser Technology, 101, 1-10(2018).

    [34] Jali M H, Rahim H R A, Johari M A M et al. Formaldehyde sensing using ZnO nanorods coated glass integrated with microfiber. Optics & Laser Technology, 120, 105750(2019).

    [35] Sharifpour-Boushehri S, Hosseini-Golgoo S M, Sheikhi M H. A low cost and reliable fiber optic ethanol sensor based on nano-sized SnO2. Optical Fiber Technology, 24, 93-99(2015).

    [36] Compton D A C, Hill S L, Wright N A et al. In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber. Applied Spectroscopy, 42, 972-979(1988).

    [37] Bureau B, Zhang X H, Smektala F et al. Recent advances in chalcogenide glasses. Journal of Non-Crystalline Solids, 345/346, 276-283(2004).

    [38] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0‒16 μm in a low-loss telluride single-mode fiber. Laser & Photonics Reviews, 11, 1700005(2017).

    [39] Sharma A K, Gupta J. Fiber optic sensor's performance enhancement by tuning NIR wavelength, polarization, and 2D material. IEEE Photonics Technology Letters, 30, 1087-1090(2018).

    [40] Sharma A K, Gupta J. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood. Optical Fiber Technology, 41, 125-130(2018).

    [41] Keirsse J, Boussard-Plédel C, Loreal O et al. Chalcogenide glass fibers used as biosensors. Journal of Non-Crystalline Solids, 326/327, 430-433(2003).

    [42] Wu Z H, Xu Y S, Qi D F et al. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers. Infrared Physics & Technology, 102, 102981(2019).

    [43] Anty R, Morvan M, Le Corvec M et al. The mid-infrared spectroscopy: a novel non-invasive diagnostic tool for NASH diagnosis in severe obesity. JHEP Reports, 1, 361-368(2019).

    [44] Su J X, Su J X, Dai S X et al. Optimized Ge-As-Se-Te chalcogenide glass fiber sensor with polydopamine-coated tapered zone for the highly sensitive detection of p-xylene in waters. Optics Express, 28, 184-193(2020).

    [45] Velmuzhov A P, Shiryaev V S, Sukhanov M V et al. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis. Optical Materials, 75, 525-532(2018).

    [46] Romanova E A, Korsakova S, Komanec M et al. Multimode chalcogenide fibers for evanescent wave sensing in the mid-IR. IEEE Journal of Selected Topics in Quantum Electronics, 23, 289-295(2017).

    [47] Korsakova S, Romanova E, Velmuzhov A et al. Peculiarities of the mid-infrared evanescent wave spectroscopy based on multimode chalcogenide fibers. Journal of Non-Crystalline Solids, 475, 38-43(2017).

    [48] Velmuzhov A P, Sukhanov M V, Shiryaev V S et al. Preparation and investigation of [GeSe4]100-xIx glasses as promising materials for infrared fiber sensors. Optical Materials, 60, 438-442(2016).

    [49] Yang C F, Wang X M, Su J X et al. Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber. Journal of Non-Crystalline Solids, 500, 377-381(2018).

    [50] Chahal R, Starecki F, Boussard-Plédel C et al. Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers. Sensors and Actuators B: Chemical, 229, 209-216(2016).

    [51] Velmuzhov A P, Sukhanov M V, Kotereva T V et al. Optical fibers based on special pure Ge20Se80 and Ge26As17Se25Te32 glasses for FEWS. Journal of Non-Crystalline Solids, 517, 70-75(2019).

    [52] Romanova E A, Korsakova S V, Rozhnev A G et al. Chalcogenide fiber loop probe for the mid-IR spectroscopy of oil products. Optics Express, 28, 5267-5272(2020).

    [53] Lucas P, Bureau B. Selenide glass fibers for biochemical infrared sensing. Applications of Chalcogenides:, 285-319(2016).

    [54] Ballato J, Hawkins T, Foy P et al. Silicon optical fiber. Optics Express, 16, 18675-18683(2008).

    Zhao Xudong, Xu Yinsheng, Zhang Xianghua, Zhao Xiujian. Research Advancements in Optical Fiber Evanescent Wave Biochemical Sensing[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3000051
    Download Citation