• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016005 (2023)
Sven Ebel1、2, Yadong Deng1, Mario Hentschel3, Chao Meng1, Sören im Sande1, Harald Giessen3, Fei Ding1、*, and Sergey I. Bozhevolnyi1、*
Author Affiliations
  • 1University of Southern Denmark, Center for Nano Optics, Odense, Denmark
  • 2Kiel University, Institute for Experimental and Applied Physics, Kiel, Germany
  • 3University of Stuttgart, Research Center SCoPE, 4th Physics Institute, Stuttgart, Germany
  • show less
    DOI: 10.1117/1.APN.2.1.016005 Cite this Article Set citation alerts
    Sven Ebel, Yadong Deng, Mario Hentschel, Chao Meng, Sören im Sande, Harald Giessen, Fei Ding, Sergey I. Bozhevolnyi. Optical reflective metasurfaces based on mirror-coupled slot antennas[J]. Advanced Photonics Nexus, 2023, 2(1): 016005 Copy Citation Text show less
    References

    [1] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [2] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [3] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Progr. Phys., 79, 076401(2016).

    [4] H. H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [5] F. Ding, A. Pors, S. I. Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys., 81, 026401(2018).

    [6] S. L. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380-479(2019).

    [7] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [8] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [9] E. Karimi et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [10] F. Falcone et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett., 93, 197401(2004).

    [11] T. Zentgraf et al. Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B, 76, 033407(2007).

    [12] X. Ni et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl., 2, e72(2013).

    [13] S. Wang, D. C. Abeysinghe, Q. Zhan. Generation of vectorial optical fields with slot-antenna-based metasurface. Opt. Lett., 40, 4711-4714(2015).

    [14] M. Q. Mehmood et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater., 28, 2533(2016).

    [15] M. Habib et al. Wavefront control with nanohole array-based out-of-plane metasurfaces. ACS Appl. Nano Mater., 4, 8699(2021).

    [16] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [17] A. Pors et al. Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep., 3, 2155(2013).

    [18] F. Ding et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics, 7, 1129-1156(2018).

    [19] Y. Deng et al. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering. ACS Nano., 15, 18532(2021).

    [20] D. Lin et al. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [21] A. Arbari et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [22] M. Khorasaninejad et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 352, 1190-1194(2016).

    [23] A. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [24] C. Zhang et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl., 9, 55(2020).

    [25] P. Thureja et al. Array-level inverse design of beam steering active metasurfaces. ACS Nano, 14, 15042(2020).

    [26] J. Park et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2021).

    [27] C. Damgaard-Carstensen et al. Electrical tuning of Fresnel lens in reflection. ACS Photonics, 8, 1576(2021).

    [28] A. Weiss et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics, 9, 605(2022).

    [29] J. Karst et al. Electrically switchable metallic polymer nanoantennas. Science, 374, 612-616(2021).

    [30] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370(1972).

    [31] T. W. Ebbesen et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [32] F. J. García-Vidal et al. Transmission of light through a single rectangular hole. Phys. Rev. Lett., 95, 103901(2005).

    [33] H. Guo et al. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Express, 16, 7756-7766(2008).

    [34] S. Larouche, D. R. Smith. Reconciliation of generalized refraction with diffraction theory. Opt. Lett., 37, 2391(2012).

    [35] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [36] F. Ding, R. Deshpande, S. I. Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl., 7, 17178(2018).

    [37] F. Ding, S. I. Bozhevolnyi. A review of unidirectional surface plasmon polariton metacouplers. IEEE J. Sel. Top. Quantum Electron., 25, 4600611(2019).

    [38] R. Deshpande et al. Direct characterization of near-field coupling in gap plasmon-based metasurfaces. Nano Lett., 18, 6265-6270(2018).

    [39] S. Boroviks et al. Use of monocrystalline gold flakes for gap plasmon-based metasurfaces operating in the visible. Opt. Mater. Express, 9, 4209-4217(2019).

    [40] S. Boroviks et al. Extremely confined gap plasmon modes: when nonlocality matters. Nat. Commun., 13, 3105(2022).

    Sven Ebel, Yadong Deng, Mario Hentschel, Chao Meng, Sören im Sande, Harald Giessen, Fei Ding, Sergey I. Bozhevolnyi. Optical reflective metasurfaces based on mirror-coupled slot antennas[J]. Advanced Photonics Nexus, 2023, 2(1): 016005
    Download Citation