• Acta Optica Sinica
  • Vol. 40, Issue 12, 1224001 (2020)
Haojian Xing, Jie Zhang*, Zenghe Yin, and Yong Zhu
Author Affiliations
  • Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3788/AOS202040.1224001 Cite this Article Set citation alerts
    Haojian Xing, Jie Zhang, Zenghe Yin, Yong Zhu. Carbon Nanotube/Silver Used for Highly Sensitive Self-Calibrating Raman Detection[J]. Acta Optica Sinica, 2020, 40(12): 1224001 Copy Citation Text show less
    References

    [1] Kneipp K, Wang Y, Kneipp H et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 78, 1667(1997).

    [2] Wang P, Liang O, Zhang W et al. Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection[J]. Advanced Materials, 25, 4918-4924(2013).

    [3] Le R E C, Etchegoin P G. Single-molecule surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 63, 65-87(2012).

    [4] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).

    [5] Shi X F, Zhang X M, Yan X et al. Detection of polycyclic aromatic hydrocarbons (PAHs) in water based on three-dimensional surface-enhanced Raman scattering substrates[J]. Acta Optica Sinica, 38, 0724001(2018).

    [6] Xu S C, Man B Y, Jiang S Z et al. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine[J]. ACS Applied Materials & Interfaces, 7, 10977-10987(2015).

    [7] Goodacre R, Graham D, Faulds K. Recent developments in quantitative SERS: moving towards absolute quantification[J]. TrAC Trends in Analytical Chemistry, 102, 359-368(2018).

    [8] Freeman L M, Pang L, Fainman Y. Self-reference and random sampling approach for label-free identification of DNA composition using plasmonic nanomaterials[J]. Scientific Reports, 8, 7398(2018).

    [9] Liu D H, Chen X S, Hu Y B et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition[J]. Nature Communications, 9, 193(2018).

    [10] Kleinman S L, Frontiera R R, Henry A I et al. Creating, characterizing, and controlling chemistry with SERS hot spots[J]. Physical Chemistry Chemical Physics, 15, 21-36(2013).

    [11] Ryu Y, Kang G M, Lee C W et al. Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer[J]. RSC Advances, 5, 76085-76091(2015).

    [12] Radha B, Lim S H. Saifullah M S M, et al. Metal hierarchical patterning by direct nanoimprint lithography[J]. Scientific Reports, 3, 1078(2013).

    [13] Zhao X Y, Wen J H, Zhang M N et al. Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography[J]. ACS Applied Materials & Interfaces, 9, 7710-7716(2017).

    [14] Ho C C, Zhao K, Lee T Y. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography[J]. Nanoscale, 6, 8606-8611(2014).

    [15] Xu S C, Jiang S Z, Wang J H et al. Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering[J]. Sensors and Actuators B: Chemical, 222, 1175-1183(2016).

    [16] Shen W, Lin X, Jiang C Y et al. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards[J]. Angewandte Chemie International Edition, 54, 7308-7312(2015).

    [17] Zhou Y, Ding R, Joshi P et al. Quantitative surface-enhanced Raman measurements with embedded internal reference[J]. Analytica Chimica Acta, 874, 49-53(2015).

    [18] Liu Y P, Lu Z W, Hasi W et al. Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface-enhanced Raman spectroscopy[J]. Analytical Methods, 9, 6622-6628(2017).

    [19] Bell S E J, Sirimuthu N M S. Quantitative surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 37, 1012-1024(2008).

    [20] Ye L L, Wen G Q, Dong J C et al. A simple label-free rhodamine 6G SERS probe for quantitative analysis of trace As 3+ in an aptamer-nanosol[J]. RSC Advances, 4, 32960-32964(2014).

    [21] Tian H H, Zhang N, Tong L M et al. In situ quantitative graphene-based surface-enhanced Raman spectroscopy[J]. Small Methods, 1, 1700126(2017).

    [22] Zhang J, Yin Z H, Gong T C et al. Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering[J]. Optics Express, 26, 22432-22439(2018).

    [23] Zhang J, Yin Z H, Zhang X L et al. Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard[J]. Optics Express, 26, 23534-23539(2018).

    [24] Gong T C, Zhang J, Zhu Y et al. Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene[J]. Carbon, 102, 245-254(2016).

    [25] Zhang X L, Zhang J, Quan J M et al. Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles[J]. The Analyst, 141, 5527-5534(2016).

    [26] Palik E D, Prucha E J[M]. Handbook of optical constants of solids(1985).

    [27] Zhang J, Zhang X L, Chen S M et al. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles[J]. Carbon, 100, 395-407(2016).

    [28] Kim K, Han H S, Choi I et al. Interfacial liquid-state surface-enhanced Raman spectroscopy[J]. Nature Communications, 4, 2182(2013).

    Haojian Xing, Jie Zhang, Zenghe Yin, Yong Zhu. Carbon Nanotube/Silver Used for Highly Sensitive Self-Calibrating Raman Detection[J]. Acta Optica Sinica, 2020, 40(12): 1224001
    Download Citation