• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071610 (2020)
Haolin Yang1, Yue Chen1, Fuqiang Jia1、*, and Pengfei Wang2、**
Author Affiliations
  • 1School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
  • 2Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, School of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/LOP57.071610 Cite this Article Set citation alerts
    Haolin Yang, Yue Chen, Fuqiang Jia, Pengfei Wang. Research Progress in Ceramic Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071610 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Geusic J E. Marcos H M, van Uitert L G. Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets[J]. Applied Physics Letters, 4, 182-184(1964).

    [3] Hatch S E, Parsons W F, Weagley R J. Hot-pressed polycrystalline CaF2∶Dy 2+ laser[J]. Applied Physics Letters, 5, 153-154(1964).

    [4] Greskovich C. O'Clair C R, Curran M J. Preparation of transparent Y2O3-doped ThO2[J]. Journal of the American Ceramic Society, 55, 324-325(1972).

    [5] Greskovich C, Chernoch J P. Polycrystalline ceramic lasers[J]. Journal of Applied Physics, 44, 4599-4606(1973).

    [6] De G. Translucent Y3Al5O12 ceramics[J]. Materials Research Bulletin, 19, 1669-1674(1984).

    [7] Mulder C, Dewith G. Translucent Y3Al5O12 ceramics: Electron microscopy characterization[J]. Solid State Ionics, 16, 81-86(1985).

    [8] Sekita M, Haneda H, Yanagitani T et al. Induced emission cross section of Nd∶Y3Al5O12ceramics[J]. Journal of Applied Physics, 67, 453-458(1990).

    [9] Ikesue A, Kinoshita T, Kamata K et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 78, 1033-1040(1995).

    [10] Mandl A, Klimek D E. Textron's J-HPSSL 100 kW ThinZag. laser program. [C]∥ Conference on Lasers and Electro-Optics 2010, San Jose, California. Washington, D.C.: OSA(2010).

    [11] Ikesue A, Kamata K, Yoshida K. Effects of neodymium concentration on optical characteristics of polycrystalline Nd∶YAG laser materials[J]. Journal of the American Ceramic Society, 79, 1921-1926(1996).

    [12] Ikesue A, Yoshida K, Yamamoto T et al. Optical scattering centers in polycrystalline Nd∶YAG laser[J]. Journal of the American Ceramic Society, 80, 1517-1522(2005).

    [13] Ikesue A, Yoshida K. Influence of prove volume on laser performance of Nd∶YAG ceramics[J]. Journal of Materials Science, 34, 1189-1195(1999).

    [14] Lu J, Prabhu M, Song J et al. Optical properties and highly efficient laser oscillation of Nd∶YAG ceramics[J]. Applied Physics B: Lasers and Optics, 71, 469-473(2000).

    [15] Lu J, Song J, Prabhu M et al. High-power Nd∶Y3Al5O12 ceramic laser[J]. Japanese Journal of Applied Physics, 39, L1048-L1050(2000).

    [16] Lu J R, Ueda K I, Yagi H et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics: a new generation of solid state laser and optical materials[J]. Journal of Alloys and Compounds, 341, 220-225(2002).

    [17] Ren G G, Huang J J. Majorprogress of US 2005' high-energy laser technology[J]. Laser & Optoelectronics Progress, 43, 3-9(2006).

    [18] Yamamoto R M, Bhachu B S, Cutter K P et al. The use of large transparent ceramics in a high powered, diode pumped solid state laser. [C]∥Advanced Solid-State Photonics, Nara. Washington, D.C.: OSA(2008).

    [19] Sanghera J, Kim W, Villalobos G et al. Ceramic laser materials[J]. Materials, 5, 258-277(2012).

    [20] Wei P F, Gan H B, Yu Y et al. End pumped Nd∶YAG ceramics laser emitting at 1.83 μm[J]. High Power Laser and Particle Beams, 29, 041005(2017).

    [21] Strohmaier S G P, Eichler H J, Bisson J F et al. Ceramic Nd∶YAG laser at 946 nm[J]. Laser Physics Letters, 2, 383-386(2005).

    [22] Zhang S S, Wang Q P, Zhang X Y et al. Continuous-wave ceramic Nd∶YAG laser at 1123 nm[J]. Laser Physics Letters, 6, 864-867(2009).

    [23] Guo L, Lan R J, Liu H et al. 1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd∶YAG ceramic laser[J]. Optics Express, 18, 9098-9106(2010).

    [24] Chen L J, Wang Z P, Liu H et al. Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd∶YAG ceramic laser[J]. Optics Express, 18, 22167-22173(2010).

    [25] Zhu H Y, Duan Y M, Xu C W et al. Continuous-wave and Q-switched neodymium-doped yttrium aluminum garnet ceramic laser at 1356 nm single wavelength[J]. Applied Physics Express, 6, 022705(2013).

    [26] Feng C, Liu Z J, Cong Z H et al. Eye-safe picosecond solid-state Nd∶YAG ceramic laser at 1.44 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-4(2018).

    [27] Feng C, Zhang H N, Fang J X et al. Passively Q-switched Nd∶YAG ceramic laser with V 3+∶YAG saturable absorber at 1357 nm[J]. Applied Optics, 54, 9902-9905(2015).

    [28] Guo J L, Zhang H N, Li P. Graphene Q-switched eye-safe Nd∶Y3Al5O12 ceramic dual-wavelength laser[J]. Applied Optics, 54, 6694-6697(2015).

    [29] Yan R P, Yu X, Ma Y F et al. High-repetition-rate, high-peak-power passively Q-switched ceramic Nd∶YAG 946 nm laser. [C]∥Advanced Solid State Lasers, Berlin. Washington, D.C.: OSA(2015).

    [30] Feng C, Zhang H N, Wang Q P et al. 1357 nm passively Q-switched crystalline ceramic laser based on multilayer graphene[J]. Laser Physics, 26, 055802(2016).

    [31] Li P, Guo J L, Zheng Y et al. Continuous wave (CW) and passively Q-switched performance of a diode-pumped Nd∶YAG ceramic laser at 1112 nm[J]. Lasers in Engineering, 33, 339-348(2016).

    [32] Bai J X, Li P, Chen X H et al. Diode-pumped passively Q-switched Nd∶YAG ceramic laser with a gold nanotriangles saturable absorber at 1 μm[J]. Applied Physics Express, 10, 082701(2017).

    [33] Wu Y J, Zhang C, Liu J J et al. Silver nanorods absorbers for Q-switched Nd∶YAG ceramic laser[J]. Optics & Laser Technology, 97, 268-271(2017).

    [34] Peng Z F, Ma Y F, Yan R P et al. Doubly Q-switched Nd∶YAG ceramic laser[J]. Journal of Russian Laser Research, 39, 187-191(2018).

    [35] Saiki T, Hirota N, Kanemori S et al. Q-switched and mode-locked Nd/Cr: YAG ceramic pulse laser[J]. International Journal of Optics, 2020, 1-7(2020).

    [36] Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers[J]. Journal of the American Ceramic Society, 89, 1936-1944(2006).

    [37] Li J, Wu Y S, Pan Y B et al. Laminar-structured YAG/Nd∶YAG/YAG transparent ceramics for solid‐state lasers[J]. International Journal of Applied Ceramic Technology, 5, 360-364(2008).

    [38] Liu W B, Zeng Y P, Li J et al. Sintering and laser behavior of composite YAG/Nd∶YAG/YAG transparent ceramics[J]. Journal of Alloys and Compounds, 527, 66-70(2012).

    [39] Tang F, Cao Y G, Huang J Q et al. Multilayer YAG/Re:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method[J]. Journal of the European Ceramic Society, 32, 3995-4002(2012).

    [40] Ikesue A, Aung Y L. Ceramic laser materials[J]. Nature Photonics, 2, 721-727(2008).

    [41] Ge L, Li J, Zhou Z W et al. Fabrication of composite YAG/Nd∶YAG/YAG transparent ceramics for planar waveguide laser[J]. Optical Materials Express, 4, 1042-1049(2014).

    [42] Liu J, Ge L, Feng L W et al. Diode-pumped composite ceramic Nd∶YAG planar waveguide amplifier with 327 mJ output at 100 Hz repetition rate[J]. Chinese Optics Letters, 14, 051404(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160427000049bHdKgN

    [43] Ma Y F, He Y, Li X D et al. Continuous-wave and passively Q-switched tape casting YAG/Nd∶YAG/YAG ceramic laser[J]. Optical Materials Express, 6, 2966-2974(2016).

    [44] Li M, Hu H, Gao Q S et al. A 7.08-kW YAG/Nd∶YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 9, 1-10(2017).

    [45] Li M, Hu H, Gao Q S et al. Dual concentration doped Nd∶YAG composite ceramic slab laser with high power[J]. Acta Optica Sinica, 37, 0514003(2017).

    [46] Takaichi K, Yagi H, Lu J et al. Yb 3+-doped Y3Al5O12 ceramics-A new solid-state laser material[J]. Physica Status Solidi (a), 200, R5-R7(2003).

    [47] Tsunekane M, Dascalu T, Taira T. High-power operation of diode edge-pumped, microchip Yb∶ YAG laser composed with YAG ceramic pump wave-guide. [C]∥Advanced Solid-State Photonics, February. 6-9, 2005, Vienna, Austria: Optical Society of America, 603-607(2005).

    [48] Tsunekane M, Taira T. 300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb∶ YAG microchip laser[J]. Optics Letters, 31, 2003-2005(2006).

    [49] Dong J, Shirakawa A, Ueda K I et al. EfficientYb 3+∶ Y3Al5O12 ceramic microchip lasers[J]. Applied Physics Letters, 89, 091114(2006).

    [50] Tsunekane M, Taira T. High-power operation of diode edge-pumped, composite all-ceramic Yb∶Y3Al5O12 microchip laser[J]. Applied Physics Letters, 90, 121101(2007).

    [51] Dong J, Shirakawa A, Ueda K I et al. Laser-diode pumped heavy-doped Yb∶YAG ceramic lasers[J]. Optics Letters, 32, 1890-1892(2007).

    [52] Nakamura S, Matsubara Y, Ogawa T et al. High-power and highly efficient Yb 3+-doped Y3Al5O12 ceramic laser at room temperature. [C]∥2007 Conference on Lasers and Electro-Optics - Pacific Rim, August 26-31, 2007. Seoul, South Korea. IEEE, 1-2(2007).

    [53] Nakamura S, Yoshioka H, Matsubara Y et al. Efficient tunable Yb∶YAG ceramic laser[J]. Optics Communications, 281, 4411-4414(2008).

    [54] Hao Q, Li W X, Pan H F et al. Laser-diode pumped 40-W Yb∶YAG ceramic laser[J]. Optics Express, 17, 17734-17738(2009).

    [55] Latham W P, Lobad A, Newell T C et al. 6.5 kW, Yb∶ YAG ceramic thin disk laser. [C]∥İnternational Symposium On High Power Laser Ablation,Apr. 18-22, 2010, Santa Fe, New Mexico, USA: American Institute of Physics, 1278, 758-764(2010).

    [56] Ikesue A, Aung Y L. Synthesis of Yb∶ YAG ceramics without sintering additives and their performance[J]. Journal of the American Ceramic Society, 100, 26-30(2017).

    [57] Furuse H, Kawanaka J, Takeshita K et al. Total-reflection active-mirror laser with cryogenic Yb∶YAG ceramics[J]. Optics Letters, 34, 3439-3441(2009).

    [58] Furuse H, Kawanaka J, Miyanaga N et al. Zig-zag active-mirror laser with cryogenic Yb 3+∶YAG/YAG composite ceramics[J]. Optics Express, 19, 2448-2455(2011).

    [59] Furuse H, Kawanaka J, Miyanaga N et al. Output characteristics of high power cryogenic Yb∶YAG TRAM laser oscillator[J]. Optics Express, 20, 21739-21748(2012).

    [60] Meng S, Chen Z Z, Bo Y et al. 6.2 kW quasi-continuous-wave diode-pumped Yb∶YAG ceramic slab laser[J]. Laser Physics, 30, 015802(2020).

    [61] Jiang N, Lin W P, Zhao Y et al. Fabrication and kW-level MOPA laser output of planar waveguide YAG/Yb∶ YAG/YAG ceramic slab[J]. Journal of the American Ceramic Society, 102, 1758-1767(2019).

    [62] Lin W P, Jiang N, Zhou T J et al. 1030 nm laser amplification of Yb∶YAG ceramic planar waveguide[J]. Chinese Journal of Lasers, 46, 0501002(2019).

    [63] Lin W P, Zhang L, Wang J T et al. Amplification properties of 1319 nm Nd∶YAG planar waveguide[J]. Laser & Optoelectronics Progress, 56, 011404(2019).

    [64] Dong J, Shirakawa A, Takaichi K et al. All-ceramic passively Q-switched Yb∶ YAG/Cr 4+∶YAG microchip laser[J]. Electronics Letters, 42, 1154-1155(2006).

    [65] Dong J, Shirakawa A, Ueda K I et al. Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser[J]. Applied Physics Letters, 90, 191106(2007).

    [66] Dong J, Ueda K I, Shirakawa A et al. Composite Yb∶YAG/Cr 4+∶YAG ceramics picosecond microchip lasers[J]. Optics Express, 15, 14516-14523(2007).

    [67] Cheng Y, Ma J, Dong J. Enhancement of Cr, Yb∶YAG self-Q-switched microchip laser by bonding Yb∶YAG ceramic[J]. Chinese Journal of Lasers, 40, 0102006(2013).

    [68] Wang C, Li W X, Bai D B et al. Mode-locked composite YAG/Yb∶YAG ceramic laser and high-power amplification[J]. IEEE Photonics Technology Letters, 28, 433-436(2016).

    [69] Mužík J, Jelínek M, Jambunathan V et al. Cryogenically-cooled Yb∶YGAG ceramic mode-locked laser[J]. Optics Express, 24, 1402-1408(2016).

    [70] Gao Z Y, Zhu J F, Wang K et al. Diode-pumped Kerr-lens mode-locked femtosecond Yb∶YAG ceramic laser[J]. Chinese Physics B, 25, 024205(2016).

    [71] Liu Y, Wang C, Luo D P et al. Generation of 70 fs broadband pulses in a hybrid nonlinear amplification system with mode-locked Yb∶YAG ceramic oscillator[J]. Journal of Optics, 19, 125501(2017).

    [72] Yang C, Gu C L, Liu Y et al. Dual repetition rate mode-locked Yb∶YAG ceramic laser[J]. Acta Physica Sinica, 67, 094206(2018).

    [73] Li J, Zhou J, Pan Y B et al. Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics[J]. Journal of the American Ceramic Society, 95, 1029-1032(2012).

    [74] Gluth A, Wang Y C, Petrov V et al. GaSb-based SESAM mode-locked Tm∶YAG ceramic laser at 2 μm[J]. Optics Express, 23, 1361-1369(2015).

    [75] Lan R, Loiko P, Mateos X et al. Passive Q-switching of microchip lasers based on Ho: YAG ceramics[J]. Applied Optics, 55, 4877-4887(2016).

    [76] Wang S, Shi Y, Li S H et al. Diode-pumped single-frequency Er:YAG ceramic laser[J]. Acta Optica Sinica, 38, 0914003(2018).

    [77] Wu J, Ju L, Yao B Q et al. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho∶YAG/YAG ceramic laser[J]. Infrared Physics & Technology, 78, 40-44(2016).

    [78] Yao B Q, Li X L, Dai T Y et al. Diode-pumped tape casting planar waveguide YAG/Tm∶ YAG/YAG ceramic laser at 2013.76 nm[J]. Optics letters, 41, 254-256(2016).

    [79] Lu J, Bisson J F, Takaichi K et al. Yb 3+∶Sc2O3 ceramic laser[J]. Applied Physics Letters, 83, 1101-1103(2003).

    [80] Kong J, Lu J, Takaichi K et al. Diode-pumped Yb∶Y2O3 ceramic laser[J]. Applied Physics Letters, 82, 2556-2558(2003).

    [81] Takaichi K, Yagi H, Lu J R et al. Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb 3+∶Y2O3 ceramic lasers[J]. Applied Physics Letters, 84, 317-319(2004).

    [82] Takaichi K, Yagi H, Shirakawa A et al. Lu2O3∶Yb 3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 202, R1-R3(2005).

    [83] Kong J, Tang D Y, Zhao B et al. 9.2-W diode-end-pumped Yb∶Y2O3 ceramic laser[J]. Applied Physics Letters, 86, 161116(2005).

    [84] Kong J, Tang D Y, Chan C C et al. High-efficiency 1040 and 1078 nm laser emission of a Yb∶Y2O3 ceramic laser with 976 nm diode pumping[J]. Optics Letters, 32, 247-249(2007).

    [85] Casagrande O, Deguil-Robin N, Le Garrec B et al. Cryogenically cooled ytterbium doped sesquioxide ceramic lasers. [C]∥LEOS 2006-19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, October 29-November 2, 2006. IEEE, 739-740(2006).

    [86] Merkle L D, Newburgh G A, Ter-Gabrielyan N et al. Temperature-dependent lasing and spectroscopy of Yb∶Y2O3 and Yb∶Sc2O3[J]. Optics Communications, 281, 5855-5861(2008).

    [87] Nakao H, Inagaki T, Shirakawa A et al. Yb 3+ doped ceramic thin-disk lasers of Lu-based oxides[J]. Optical Materials Express, 4, 2116-2121(2014).

    [88] Kitajima S, Nakao H, Shirakawa A et al. CW performance and temperature observation of Yb∶Lu2O3 ceramic thin-disk laser. [C]∥Advanced Solid State Lasers, January, October. 1-5, 2017, Nagoya, Aichi, Japan: Optical Society of America, JM5A, 32(2017).

    [89] Shirakawa A, Takaichi K, Yagi H et al. Diode-pumped mode-locked Yb 3+∶Y2O3 ceramic laser[J]. Optics Express, 11, 2911-2916(2003).

    [90] Shirakawa A, Takaichi K, Yagi H et al. First mode-locked ceramic laser: femtosecond Yb 3+∶Y2O3 ceramic laser[J]. Laser Physics, 14, 1375-1381(2004).

    [91] Tokurakawa M, Takaichi K, Shirakawa A et al. Diode-pumped mode-locked Yb 3+∶Lu2O3 ceramic laser[J]. Optics Express, 14, 12832-12838(2006).

    [92] Tokurakawa M, Takaichi K, Shirakawa A et al. Diode-pumped 188 fs mode-locked Yb 3+∶Y2O3 ceramic laser[J]. Applied Physics Letters, 90, 071101(2007).

    [93] Tokurakawa M, Shirakawa A, Ueda K I et al. Continuous wave and mode-locked Yb 3+∶Y2O3 ceramic thin disk laser[J]. Optics Express, 20, 10847-10853(2012).

    [94] Tokurakawa M, Shirakawa A, Ueda K I et al. Diode-pumped 65 fs Kerr-lens mode-locked Yb 3+∶ Lu2O3 and nondoped Y2O3 combined ceramic laser[J]. Optics Letters, 33, 1380-1382(2008).

    [95] Xie G Q, Tang D Y, Zhao L M et al. High-power self-mode-locked Yb∶Y2O3 ceramic laser[J]. Optics Letters, 32, 2741-2743(2007).

    [96] Lagatsky A A, Antipov O L, Sibbett W. Broadly tunable femtosecond Tm∶Lu2O3 ceramic laser operating around 2070 nm[J]. Optics Express, 20, 19349-19354(2012).

    [97] Paradis C, Modsching N, Wittwer V J et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb∶Lu2O3 thin-disk laser[J]. Optics Express, 25, 14918-14925(2017).

    [98] Kitajima S, Shirakawa A, Yagi H et al. Sub-100 fs pulse generation from a Kerr-lens mode-locked Yb∶Lu2O3 ceramic thin-disk laser[J]. Optics Letters, 43, 5451-5454(2018).

    [99] Ryabochkina P A, Chabushkin A N, Kopylov Y L et al. Two-micron lasing on diode-pumped Y2O3∶Tm ceramics[J]. Quantum Electronics, 46, 597-600(2016).

    [100] Antipov O, Novikov A, Larin S et al. Highly efficient 2 μm CW and Q-switched Tm 3+∶ Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm[J]. Optics Letters, 41, 2298-2301(2016).

    [101] Wang H, Huang H T, Liu P et al. Diode-pumped continuous-wave and Q-switched Tm∶Y2O3 ceramic laser around 2050 nm[J]. Optical Materials Express, 7, 296-303(2017).

    [102] Xu X D, Hu Z W, Li D Z et al. First laser oscillation of diode-pumped Tm 3+-doped LuScO3 mixed sesquioxide ceramic[J]. Optics Express, 25, 15322-15329(2017).

    [103] Wang Y C, Jing W, Loiko P et al. Sub-10 optical-cycle passively mode-locked Tm∶(Lu2/3Sc1/3)2O3 ceramic laser at 2 μm[J]. Optics Express, 26, 10299-10304(2018).

    [104] Wang L, Huang H T, Shen D Y et al. Diode-pumped high power 2.7 μm Er∶Y2O3 ceramic laser at room temperature[J]. Optical Materials, 71, 70-73(2017).

    [105] Uehara H, Yasuhara R, Tokita S et al. Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er∶Lu2O3 ceramic laser[J]. Optics Express, 25, 18677-18684(2017).

    [106] Ikesue A, Aung Y L, Yoda T et al. Fabrication and laser performance of polycrystal and single crystal Nd∶YAG by advanced ceramic processing[J]. Optical Materials, 29, 1289-1294(2007).

    [107] Pirri A, Toci G, Li J et al. Spectroscopic and laser characterization of Yb0.15∶(LuxY1⁃x)3Al 5O12 ceramics with different Lu/Y balance[J]. Optics Express, 24, 17832-17842(2016).

    Haolin Yang, Yue Chen, Fuqiang Jia, Pengfei Wang. Research Progress in Ceramic Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071610
    Download Citation