• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071610 (2020)
Haolin Yang1, Yue Chen1, Fuqiang Jia1、*, and Pengfei Wang2、**
Author Affiliations
  • 1School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
  • 2Key Laboratory of In-fiber Integrated Optics, Ministry Education of China, School of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/LOP57.071610 Cite this Article Set citation alerts
    Haolin Yang, Yue Chen, Fuqiang Jia, Pengfei Wang. Research Progress in Ceramic Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071610 Copy Citation Text show less
    Evolution of laser output power versus year for Nd∶YAG ceramic lasers[19]
    Fig. 1. Evolution of laser output power versus year for Nd∶YAG ceramic lasers[19]
    Laser bands corresponding to transitions between different energy levels[20]
    Fig. 2. Laser bands corresponding to transitions between different energy levels[20]
    1443 nm Nd∶YAG ceramic laser. (a) Experimental setup; (b) output performance[26]
    Fig. 3. 1443 nm Nd∶YAG ceramic laser. (a) Experimental setup; (b) output performance[26]
    Passively Q-switched Nd∶YAG ceramic laser at 1123 nm. (a) Experimental setup; (b) absorption spectrum of the GNTs-SA; (c) output power; (d) evolution of pulse repetition rate and pulse width varying with pump power[32]
    Fig. 4. Passively Q-switched Nd∶YAG ceramic laser at 1123 nm. (a) Experimental setup; (b) absorption spectrum of the GNTs-SA; (c) output power; (d) evolution of pulse repetition rate and pulse width varying with pump power[32]
    Composite Nd∶YAG ceramics with different structures and their properties
    Fig. 5. Composite Nd∶YAG ceramics with different structures and their properties
    Experimental setup for laser diode side-pumped composite rod ceramic[38]
    Fig. 6. Experimental setup for laser diode side-pumped composite rod ceramic[38]
    Laser performance of various types of composite Nd∶YAG ceramic[36]
    Fig. 7. Laser performance of various types of composite Nd∶YAG ceramic[36]
    Planar waveguide YAG/Nd∶YAG/YAG ceramic laser. (a) Experimental setup; (b) structure of planar waveguide YAG/Nd∶YAG/YAG ceramic[42]
    Fig. 8. Planar waveguide YAG/Nd∶YAG/YAG ceramic laser. (a) Experimental setup; (b) structure of planar waveguide YAG/Nd∶YAG/YAG ceramic[42]
    Schematic of the dual concentration doping YAG/Nd∶YAG/YAG slab ceramic[45]
    Fig. 9. Schematic of the dual concentration doping YAG/Nd∶YAG/YAG slab ceramic[45]
    Two-pass-pumping laser configuration[51]
    Fig. 10. Two-pass-pumping laser configuration[51]
    Experimental setup of Yb∶ YAG ceramic laser[54]
    Fig. 11. Experimental setup of Yb∶ YAG ceramic laser[54]
    Experimental results. (a) Output power of 10.0% Yb∶YAG ceramic laser; (b) output power of 5.0% Yb∶YAG ceramic laser[54]
    Fig. 12. Experimental results. (a) Output power of 10.0% Yb∶YAG ceramic laser; (b) output power of 5.0% Yb∶YAG ceramic laser[54]
    Beam quality as a function of the output power[54]
    Fig. 13. Beam quality as a function of the output power[54]
    Composite YAG/Yb∶YAG/YAG ceramic laser. (a) Structural diagram of composite ceramic; (b) experimental setup of ceramic laser[58]
    Fig. 14. Composite YAG/Yb∶YAG/YAG ceramic laser. (a) Structural diagram of composite ceramic; (b) experimental setup of ceramic laser[58]
    Experimental setup of slap Yb∶YAG ceramic laser[60]
    Fig. 15. Experimental setup of slap Yb∶YAG ceramic laser[60]
    Experimental setup of the planar waveguide YAG/10% Yb∶YAG/YAG ceramic MOPA[61]
    Fig. 16. Experimental setup of the planar waveguide YAG/10% Yb∶YAG/YAG ceramic MOPA[61]
    Experimental setup of laser system[71]
    Fig. 17. Experimental setup of laser system[71]
    Planar waveguide YAG/Tm∶YAG/YAG ceramic laser. (a) Experimental setup; (b) output power with different output mirrors[78]
    Fig. 18. Planar waveguide YAG/Tm∶YAG/YAG ceramic laser. (a) Experimental setup; (b) output power with different output mirrors[78]
    Yb∶Lu2O3 ceramic laser. (a) Experimental setup; (b) photograph of the pump module[87]
    Fig. 19. Yb∶Lu2O3 ceramic laser. (a) Experimental setup; (b) photograph of the pump module[87]
    Experimental setup for the Kerr-lens mode-locked laser[98]
    Fig. 20. Experimental setup for the Kerr-lens mode-locked laser[98]
    Energy level structure diagram of Tm3+
    Fig. 21. Energy level structure diagram of Tm3+
    Experimental setup for LD end-pumped Er∶Y2O3 ceramic lasers[104]
    Fig. 22. Experimental setup for LD end-pumped Er∶Y2O3 ceramic lasers[104]
    YearLaser wavelength /nmOutput power /WEfficiency /%Reference
    20059461.522.5 (optical to optical)[21]
    2009112310.841.4 (optical to optical)[22]
    2010131913385.9230.3 (slope)29 (optical to optical)[23]
    20101064131913383.230 (optical to optical)[24]
    201313563.0131.9 (slope)[25]
    201718300.655.8 (slope)[20]
    201814400.8427.7 (slope)[26]
    Table 1. Output performance of 1-1.8 μm Nd∶YAG ceramic lasers
    YearLaserwavelength /nmSaturableabsorberOutputpower / mWEnergy /μJPulsewidth /nsRepetitionrete /kHzPeakpower /WReference
    20151357V∶YAG6284221152000[27]
    201514151442.8Graphene6015.9547010112.7[28]
    2015946Cr∶YAG532161133.312400[29]
    20161357Graphene34053380209139[30]
    20161112Cr∶YAG71366810.88250[31]
    20171123GNTs-SA1720.382314571.630[32]
    20171064Ag-NRs1140.5197223.72.590[33]
    20181064Doubly Q127063.525202540[34]
    20201064SESAM/Cr∶YAG43008060000[35]
    Note: GNTs-SA is gold nanotriangles-saturable absorber,Ag-NRs is sliver nanorods
    Table 2. Pulsed Nd∶YAG ceramic lasers based on different saturable absorbers
    YearDopingconcentration /%Gain mediumthickness /mmLaser operationmodeOutputpower /WEfficiency /%Reference
    20031.01.6CW0.34526[46]
    20055.00.3QCWCW410 (peak)2855541[47]
    20065.00.3CW30049[48]
    20069.81CW1.7379[49]
    200710.00.2QCWCW520(peak)4145647[50]
    200720.01CW2.752[51]
    200810.01CW5.552[52]
    20089.81CW6.872[53]
    200910.05.03.5CW13.54043.439.3[54]
    20109.00.2CW650053[55]
    201610.00.15CW180074.1[56]
    Note: QCW is quasi-continuous-wave, CW is continuous wave
    Table 3. Continuous lasers with Yb∶YAG ceramics
    YearEfficiency /%Energy /μJRepetitionrate /kHzPulsewidth /psPeakpower /kWReference
    2006373112.438082[64]
    2007271253.81200105[65]
    2007291723.5237720[66]
    201310253030009[67]
    Table 4. Passively Q-switched lasers with composite Yb∶YAG/Cr∶YAG ceramics
    YearMode-lockedelementOutputpower / WRepetitionrate /MHzPulsewidth /fsDispersioncompensation/compressorReference
    2016SESAM240102.41970Yes[68]
    2016SESAM1192400No[69]
    2016Yb∶YAG0.3297Yes[70]
    2017YAG/Yb∶YAG9110070Yes[71]
    2018SESAM0.17448.918 448.98228002600No[72]
    Note: SESAM is semiconductor saturable absorber mirror
    Table 5. Passively mode-locked lasers with Yb∶YAG ceramics
    YearSubstrateWavelength /nmThickness/length /mmDopingconcentration /%Outputpower /WEfficiency /%Reference
    2003Sc2O310942.32.50.429[79]
    10410.2
    2003Y2O310780.68.00.7512.6[80]
    2004Y2O3103010750.50.82.04.01.31.44572[81]
    2005Lu2O31035107513.00.70.953653[82]
    2005Y2O3107838.09.241[83]
    2006Y2O31040107828.01.41.7457.182.4[84]
    2006Y2O310312100.52153[85]
    2008Y2O310301.67108070[86]
    2014Lu2O310340.33.045.160.6[87]
    2017Lu2O310340.153.017454[88]
    Table 6. Laser performance of Yb3+ doped sesquioxide ceramic lasers
    YearSubstratePulse width /fsWavelength /nmOutput power /WRepetition rate /MHzReference
    2003Y2O36151076.50.4598[89]
    2004Y2O343010370.2198[90]
    2006Lu2O33571033.50.35297[91]
    2007Y2O318810380.2297[92]
    2012Y2O354710307.445[93]
    Table 7. Passively mode-locked lasers with Yb3+ doped sesquioxide ceramics
    Haolin Yang, Yue Chen, Fuqiang Jia, Pengfei Wang. Research Progress in Ceramic Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071610
    Download Citation