• Photonics Research
  • Vol. 12, Issue 1, 163 (2024)
Runlin Miao1, Ke Yin2、3, Chao Zhou4, Chenxi Zhang3, Zhuopei Yu3, Xin Zheng1, and Tian Jiang5、*
Author Affiliations
  • 1National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
  • 2Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
  • 3College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 4College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • 5Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.1364/PRJ.507227 Cite this Article Set citation alerts
    Runlin Miao, Ke Yin, Chao Zhou, Chenxi Zhang, Zhuopei Yu, Xin Zheng, Tian Jiang. Dual-microcomb generation via a monochromatically pumped dual-mode microresonator[J]. Photonics Research, 2024, 12(1): 163 Copy Citation Text show less
    References

    [1] P. Del’Haye, A. Schliesser, O. Arcizet. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [2] W. Wang, L. Wang, W. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, 034001(2020).

    [3] T. Herr, V. Brasch, J. D. Jost. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2013).

    [4] P. Marin-Palomo, J. N. Kemal, M. Karpov. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [5] Y. Geng, H. Zhou, X. Han. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun., 13, 1070(2022).

    [6] W. Shao, Y. Wang, S. Jia. Terabit FSO communication based on a soliton microcomb. Photonics Res., 10, 2802-2808(2022).

    [7] M. Yang, G. Wang, Z. Wang. Micrometer-precision absolute distance measurement with a repetition-rate-locked soliton microcomb. Opt. Lett., 48, 4356-4359(2023).

    [8] J. Wang, Z. Lu, W. Wang. Long-distance ranging with high precision using a soliton microcomb. Photonics Res., 8, 1964-1972(2020).

    [9] Z. L. Newman, V. Maurice, T. Drake. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [10] J. Liu, E. Lucas, A. S. Raja. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [11] J. Hu, J. He, J. Liu. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nat. Commun., 11, 4377(2020).

    [12] B. Wang, J. S. Morgan, K. Sun. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl., 10, 4(2021).

    [13] X. Xu, M. Tan, B. Corcoran. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [14] B. Bai, Q. Yang, H. Shu. Microcomb-based integrated photonic processing unit. Nat. Commun., 14, 66(2023).

    [15] H. Shu, L. Chang, Y. Tao. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [16] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [17] Y. Wang, Z. Wang, X. Wang. Scanning dual-microcomb spectroscopy. Sci. China Phys. Mech. Astron., 65, 294211(2022).

    [18] B. Wang, Z. Yang, S. Sun. Radio-frequency line-by-line Fourier synthesis based on optical soliton microcombs. Photonics Res., 10, 932-938(2022).

    [19] B. Wang, Z. Yang, X. Zhang. Vernier frequency division with dual-microresonator solitons. Nat. Commun., 11, 3975(2020).

    [20] Q. Yang, B. Shen, H. Wang. Vernier spectrometer using counterpropagating soliton microcombs. Science, 363, 965-968(2019).

    [21] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [22] A. Lukashchuk, J. Riemensberger, A. Tusnin. Chaotic microcomb-based parallel ranging. Nat. Photonics, 17, 814-821(2023).

    [23] F. Yin, Z. Yin, X. Xie. Broadband radio-frequency signal synthesis by photonic-assisted channelization. Opt. Express, 29, 17839-17848(2021).

    [24] N. P. O’Malley, K. A. McKinzie, M. S. Alshaykh. Architecture for integrated RF photonic downconversion of electronic signals. Opt. Lett., 48, 159-162(2023).

    [25] H. Zhou, Y. Geng, W. Cui. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [26] R. Niu, M. Li, S. Wan. kHz-precision wavemeter based on reconfigurable microsoliton. Nat. Commun., 14, 169(2023).

    [27] C. Wang, J. Li, A. Yi. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform. Light Sci. Appl., 11, 341(2022).

    [28] Y. Zhao, L. Chen, C. Zhang. Soliton burst and bi-directional switching in the platform with positive thermal-refractive coefficient using an auxiliary laser. Laser Photonics Rev., 15, 2100264(2021).

    [29] J. Gu, X. Li, K. Qi. Octave-spanning soliton microcomb in silica microdisk resonators. Opt. Lett., 48, 1100-1103(2023).

    [30] Q. Zhang, B. Liu, Q. Wen. Low-noise amplification of dissipative Kerr soliton microcomb lines via optical injection locking lasers. Chin. Opt. Lett., 19, 121401(2021).

    [31] Y. Wang, W. Wang, Z. Lu. Hyperbolic resonant radiation of concomitant microcombs induced by cross-phase modulation. Photonics Res., 11, 1075-1084(2023).

    [32] J. R. Stone, T. C. Briles, T. E. Drake. Thermal and nonlinear dissipative-soliton dynamics in kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

    [33] R. Miao, C. Zhang, X. Zheng. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation. Photonics Res., 10, 1859-1867(2022).

    [34] T. Wildi, V. Brasch, J. Liu. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett., 44, 4447-4450(2019).

    [35] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 11, 600-607(2017).

    [36] Z. Xiao, T. Li, M. Cai. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl., 12, 33(2023).

    [37] N. G. Pavlov, G. Lihachev, S. Koptyaev. Soliton dual frequency combs in crystalline microresonators. Opt. Lett., 42, 514-517(2017).

    [38] R. Miao, K. Yin, C. Zhang. Stable soliton dual-microcomb generation via sideband thermal compensation for spectroscopy. Front. Phys., 10, 989047(2022).

    [39] W. Weng, R. Bouchand, T. J. Kippenberg. Formation and collision of multistability-enabled composite dissipative Kerr solitons. Phys. Rev. X, 10, 021017(2020).

    [40] S. Zhang, J. M. Silver, T. Bi. Spectral extension and synchronization of microcombs in a single microresonator. Nat. Commun., 11, 6384(2020).

    [41] Q. Yang, X. Yi, K. Y. Yang. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560-564(2017).

    [42] X. Xue, P. Grelu, B. Yang. Dispersion-less Kerr solitons in spectrally confined optical cavities. Light Sci. Appl., 12, 19(2023).

    [43] Y. Geng, Y. Xiao, X. Han. Polarization multiplexed dissipative Kerr solitons in an on-chip micro-resonator. Opt. Lett., 47, 3644-3647(2022).

    [44] H. Weng, A. Afridi, M. McDermott. Dual-microcombs generation with a single-pumped Si3N4 microresonator for tunable microwave oscillation. CLEO: Applications and Technology, JTu2A.89(2023).

    [45] G. Lin, T. Sun. Mode crossing induced soliton frequency comb generation in high-Q yttria-stabilized zirconia crystalline optical microresonators. Photonics Res., 10, 731-739(2022).

    [46] H. Weng, A. A. Afridi, J. Li. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons. APL Photonics, 7, 066103(2022).

    [47] H. Weng, J. Liu, A. A. Afridi. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Res., 9, 1351-1357(2021).

    [48] Z. Wu, Y. Gao, T. Zhang. Coexistence of multiple microcombs in monochromatically pumped Si3N4 microresonators. Opt. Lett., 47, 1190-1193(2022).

    [49] W. Weng, R. Bouchand, E. Lucas. Heteronuclear soliton molecules in optical microresonators. Nat. Commun., 11, 2402(2020).

    [50] H. Guo, M. Karpov, E. Lucas. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2016).

    [51] K. Liu, Z. Wang, S. Yao. Mitigating fast thermal instability by engineered laser sweep in AlN soliton microcomb generation. Photonics Res., 11, A10-A18(2023).

    [52] Z. Ye, H. Jia, Z. Huang. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res., 11, 558-568(2023).

    [53] S. Wan, R. Niu, J. Peng. Fabrication of the high-Q Si3N4 microresonators for soliton microcombs. Chin. Opt. Lett., 20, 032201(2022).

    [54] Y. Luo, B. Shi, W. Sun. A vector spectrum analyzer of 55.1 THz spectral bandwidth and 99 kHz frequency resolution. arXiv(2023).

    [55] S. Wan, R. Niu, Z. Wang. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photonics Res., 8, 1342-1349(2020).

    [56] R. Chen, H. Shu, B. Shen. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics, 17, 306-314(2023).

    [57] A. Lukashchuk, J. Riemensberger, A. Stroganov. Chaotic microcomb inertia-free parallel ranging. APL Photonics, 8, 056102(2023).

    [58] L. Wang, X. Mao, A. Wang. Scheme of coherent optical chaos communication. Opt. Lett., 45, 4762-4765(2020).

    [59] B. Shen, H. Shu, W. Xie. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat. Commun., 14, 4590(2023).

    [60] A. Y. Piggott, E. Y. Ma, L. Su. Inverse-designed photonics for semiconductor foundries. ACS Photonics, 7, 569-575(2020).

    Runlin Miao, Ke Yin, Chao Zhou, Chenxi Zhang, Zhuopei Yu, Xin Zheng, Tian Jiang. Dual-microcomb generation via a monochromatically pumped dual-mode microresonator[J]. Photonics Research, 2024, 12(1): 163
    Download Citation