• Acta Optica Sinica
  • Vol. 42, Issue 9, 0912003 (2022)
Ningchao Zhang1、*, Fan Yang1, Juan Ren2, Yuetao Du1, Peng Wang1、**, and Fusheng Liu3
Author Affiliations
  • 1College of Electronics and Information Engineering, Xi′an Technological University, Xi′an 710021, Shaanxi, China
  • 2School of Science, Xi′an Technological University, Xi′an 710021, Shaanxi, China
  • 3Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • show less
    DOI: 10.3788/AOS202242.0912003 Cite this Article Set citation alerts
    Ningchao Zhang, Fan Yang, Juan Ren, Yuetao Du, Peng Wang, Fusheng Liu. Temperature Inversion Algorithm for Multi-Spectral Measurement of Material Shock Radiation Characteristics[J]. Acta Optica Sinica, 2022, 42(9): 0912003 Copy Citation Text show less
    References

    [1] Cao T, Sun H, Zhou Y et al. Numerical simulation and application of propagation characteristics of shock wave near ground explosion[J]. Journal of Ordnance Equipment Engineering, 41, 187-191(2020).

    [2] Zhan C L, Han J, Lu S J et al. Research on multi-spectral thermometry for the flame temperature measurement of ammunition explosions[J]. Metrology & Measurement Technology, 38, 48-52(2018).

    [3] Li Z Y, Xi L X, Liu J P et al. Flame temperature measurement of pyrotechnic composition using multi-spectral thermometry[J]. Chinese Journal of Energetic Materials, 18, 405-408(2010).

    [4] Bian Y T, Pan J, Jiang L J et al. Study on variation of short wave infrared spectral emissivity of high-temperature graphite plate[J]. Acta Optica Sinica, 41, 1030003(2021).

    [5] Zhao W M, Li L F, Yuan Z Y et al. Directional spectral emissivity of Ti-6Al-4V alloy[J]. Acta Optica Sinica, 40, 0830002(2020).

    [6] Svet D Y. A new method of measurement of the true temperature and emissivity of non-black body using one component of Wien’s spectrum of thermal radiation[J]. Journal of Applied Mathematics and Physics, 3, 524-529(2015).

    [7] Smurov I, Doubenskaia M. Temperature monitoring by optical methods in laser processing[M]. //Majumdar J D, Manna I. Laser-assisted fabrication of materials. Springer series in materials science. Heidelberg: Springer, 161, 375-422(2012).

    [8] Qiu Q R, Liu S, Teng J et al. A two-stage polynomial method for spectrum emissivity modeling[J]. Energy Procedia, 66, 245-248(2015).

    [9] Urtiew P A, Grover R. Temperature deposition caused by shock interactions with material interfaces[J]. Journal of Applied Physics, 45, 140-145(1974).

    [10] McQueen R G, Isaak D G. Characterizing windows for shock wave radiation studies[J]. Journal of Geophysical Research Atmospheres, 95, 21753(1990).

    [11] Zhang F C, Sun X G, Xing J et al. Research on reconstruction algorithm of two dimensional radiation temperature field using infrared multi-spectral line[J]. Infrared and Laser Engineering, 45, 0704003(2016).

    [12] Zhang F C, Sun B J, Sun X G. Multispectral true temperature inversion based on multi-objective minimization optimization method[J]. Acta Optica Sinica, 39, 0212008(2019).

    [13] Sun K, Sun X G, Yu X Y et al. Development of multi-spectral thermometer for explosion flame true temperature measurement: field experiments and measurement accuracy analysis[J]. Spectroscopy and Spectral Analysis, 33, 1719-1722(2013).

    [14] Gu W H, Liang J F, Yin X et al. Multi spectral true temperature inversion algorithm based on constrained optimization method[J]. Spectroscopy and Spectral Analysis, 38, 3846-3850(2018).

    [15] Yang Y F, Li Z, Cai H X et al. Inversion research on the temperature and emissivity of high temperature spectrum based on Newton’s method[J]. Spectroscopy and Spectral Analysis, 37, 1471-1476(2017).

    [16] Zhu Z Z, Shen H, Wang N et al. Radiation temperature measurement technology based on the basis of spectral emissivity function[J]. Spectroscopy and Spectral Analysis, 37, 685-691(2017).

    [17] Hestenes M R. Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications, 4, 303-320(1969).

    [18] Kennedy J, Eberhart R C, Shi Y. The particle swarm[M]. //Swarm intelligence. Amsterdam: Elsevier, 287-325(2001).

    [19] Li J, Wang C, Li B et al. Elite opposition-based particle swarm optimization based on disturbances[J]. Application Research of Computers, 33, 2584-2587, 2591(2016).

    [20] van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 8, 225-239(2004).

    [21] Liang J J, Qin A K, Suganthan P N et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 10, 281-295(2006).

    [22] Aymeric A, Aymeric A, Xu Q L, Yang J X et al. Experimental research on measurement error of radiation spectroscopy thermometry[J]. Optical Instruments, 40, 8-11(2018).

         徐秋丽, 杨敬贤, 等. 辐射光谱测温法测量误差实验研究[J]. 光学仪器, 40, 8-11(2018).

    [23] Lü J G, Liang J Q, Liang Z Z et al. Analysis of wedge error of beam splitter in spatial modulation Fourier transform infrared spectrometer[J]. Acta Optica Sinica, 34, 1030001(2014).

    [24] Fei Y T[M]. Error analysis and data process(1981).

    [25] Zhang N C, Ren J, Wang P et al. Radiation spectral characteristics of sapphire under light-gas gun impact loading[J]. Acta Optica Sinica, 38, 0530002(2018).

    [26] Shen G, Lazor P. Measurement of melting temperatures of some minerals under lower mantle pressures[J]. Journal of Geophysical Research Solid Earth, 100, 699-713(1995).

    [27] Kondo K. Window problem and complementary method for shock-temperature measurements of iron[J]. AIP Conference Proceedings, 309, 1555-1558(1994).

    [28] Hare D E, Holmes N C, Webb D J. Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: images and spectra[J]. Physical Review B, 66, 014108(2002).

    Ningchao Zhang, Fan Yang, Juan Ren, Yuetao Du, Peng Wang, Fusheng Liu. Temperature Inversion Algorithm for Multi-Spectral Measurement of Material Shock Radiation Characteristics[J]. Acta Optica Sinica, 2022, 42(9): 0912003
    Download Citation