• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 046005 (2023)
Yu He1、†, Yunhua Yao1, Yilin He1, Zhengqi Huang1, Dalong Qi1, Chonglei Zhang2, Xiaoshuai Huang3, Kebin Shi4, Pengpeng Ding1, Chengzhi Jin1, Lianzhong Deng1, Zhenrong Sun1, Xiaocong Yuan2、*, and Shian Zhang1、5、6、*
Author Affiliations
  • 1East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Shenzhen University, Institute of Microscale Optoelectronics, Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen, China
  • 3Peking University, Biomedical Engineering Department, Beijing, China
  • 4Peking University, School of Physics, State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Beijing, China
  • 5East China Normal University, Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, Shanghai, China
  • 6Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • show less
    DOI: 10.1117/1.APN.2.4.046005 Cite this Article Set citation alerts
    Yu He, Yunhua Yao, Yilin He, Zhengqi Huang, Dalong Qi, Chonglei Zhang, Xiaoshuai Huang, Kebin Shi, Pengpeng Ding, Chengzhi Jin, Lianzhong Deng, Zhenrong Sun, Xiaocong Yuan, Shian Zhang. Untrained neural network enhances the resolution of structured illumination microscopy under strong background and noise levels[J]. Advanced Photonics Nexus, 2023, 2(4): 046005 Copy Citation Text show less
    References

    [1] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [2] S. Q. Hu et al. Structured illumination microscopy reveals focal adhesions are composed of linear subunits. Cytoskeleton, 72, 235-245(2015).

    [3] I. S. Opstad et al. Multi-color imaging of sub-mitochondria structures in living cells using structured illumination microscopy. Nanophotonics, 7, 935-947(2018).

    [4] X. Huang et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [5] A. Markwirth et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat. Commun., 10, 4315(2019).

    [6] C. Qiao et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods, 18, 194-202(2021).

    [7] Q. Chen et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. Biomaterials, 250, 120059(2020).

    [8] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015).

    [9] P. Kner et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339-342(2009).

    [10] W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [11] S. Manley et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods, 5, 155-157(2008).

    [12] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [13] M. G. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086(2005).

    [14] E. H. Rego et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. U. S. A., 109, E135-E143(2012).

    [15] W. Zhao et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol., 40, 606-617(2022).

    [16] J. B. Sibarita. Deconvolution microscopy. Adv. Biochem. Eng./Biotechnol., 95, 201-243(2005).

    [17] M. Hupfel et al. Wavelet-based background and noise subtraction for fluorescence microscopy images. Biomed. Opt. Express, 12, 969-980(2021).

    [18] C. M. Galloway, E. C. Le Ru, P. G. Etchegoin. An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectrosc., 63, 1370-1376(2009).

    [19] D. Ulyanov, A. Vedaldi, V. Lempitsky. Deep image prior, 9446-9454(2018).

    [20] F. Wang et al. Phase imaging with an untrained neural network. Light: Sci. Appl., 9, 77(2020).

    [21] H. Li et al. Deep DIH: single-shot digital in-line holography reconstruction by deep learning. IEEE Access, 8, 202648-202659(2020).

    [22] C. Bai et al. Dual-wavelength in-line digital holography with untrained deep neural networks. Photonics Res., 9, 2501-2510(2021).

    [23] S. Liu et al. Computational ghost imaging based on an untrained neural network. Opt. Laser Eng., 147, 106744(2021).

    [24] Z. Burns, Z. Liu. Untrained, physics-informed neural networks for structured illumination microscopy. Opt. Express, 31, 8714-8724(2023).

    [25] X. Liu et al. Reconstruction of structured illumination microscopy with an untrained neural network. Opt. Commun., 537, 129431(2023).

    [26] Y. He et al. Surpassing the resolution limitation of structured illumination microscopy by an untrained neural network. Bio. Opt. Express, 14, 106-117(2023).

    [27] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2014).

    [28] P. Cascarano et al. Combining weighted total variation and deep image prior for natural and medical image restoration via ADMM, 39-46(2021).

    [29] M. Muller et al. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 7, 10980(2016).

    [30] E. Sekko, G. Thomas, A. Boukrouche. A deconvolution technique using optimal Wiener filtering and regularization. Signal Process., 72, 23-32(1999).

    [31] N. Dey et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech., 69, 260-266(2006).

    [32] S. Lefkimmiatis, A. Bourquard, M. Unser. Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process., 21, 983-995(2012).

    [33] J. Mertz. Optical sectioning microscopy with planar or structured illumination. Nat. Methods, 8, 811-819(2011).

    [34] D. S. Dong et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light-Sci. Appl., 9, 15(2020).

    [35] N. J. Dolman et al. Tools and techniques to measure mitophagy using fluorescence microscopy. Autophagy, 9, 1653-1662(2013).

    [36] K. Chu et al. Image reconstruction for structured-illumination microscopy with low signal level. Opt. Express, 22, 8687-8702(2014).

    [37] L. Shao et al. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044-1046(2011).

    [38] O. Schulz et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc. Natl. Acad. Sci. U. S. A., 110, 21000-21005(2013).

    [39] W. Zong et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods, 14, 713-719(2017).

    [40] D. E. Sun et al. Click-ExM enables expansion microscopy for all biomolecules. Nat. Methods, 18, 107-113(2021).

    Yu He, Yunhua Yao, Yilin He, Zhengqi Huang, Dalong Qi, Chonglei Zhang, Xiaoshuai Huang, Kebin Shi, Pengpeng Ding, Chengzhi Jin, Lianzhong Deng, Zhenrong Sun, Xiaocong Yuan, Shian Zhang. Untrained neural network enhances the resolution of structured illumination microscopy under strong background and noise levels[J]. Advanced Photonics Nexus, 2023, 2(4): 046005
    Download Citation