• Journal of Inorganic Materials
  • Vol. 37, Issue 8, 883 (2022)
Xiaoyu ZHANG, Yongsheng LIU, Ran LI, Yaogang LI, Qinghong ZHANG, Chengyi HOU, Kerui LI*, and Hongzhi WANG*
Author Affiliations
  • State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • show less
    DOI: 10.15541/jim20220097 Cite this Article
    Xiaoyu ZHANG, Yongsheng LIU, Ran LI, Yaogang LI, Qinghong ZHANG, Chengyi HOU, Kerui LI, Hongzhi WANG. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode [J]. Journal of Inorganic Materials, 2022, 37(8): 883 Copy Citation Text show less
    References

    [1] C XU, L LIU, S LEGENSKI et al. Switchable window based on electrochromic polymers. Journal of Materials Research, 2072-2080(2004).

    [2] X WU, J ZHENG, C XU. A newly-designed self-powered electrochromic window. Science China Chemistry, 84-89(2016).

    [3] C R WADE, M LI, M DINCĂ. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angewandte Chemie International Edition, 13377-13381(2013).

    [4] C R WADE, M LI, M DINCĂ. Transparent-to-dark electrochromic behavior in naphthalene-diimide-based mesoporous MOF-74 analogs. Chem, 264-272(2016).

    [5] M RIERA, E LAMBROS, T NGUYEN et al. Low-order many-body interactions determine the local structure of liquid water. Chemical Science, 8211-8218(2019).

    [6] R LI, K LI, G WANG et al. Ion-transport design for high- performance Na+-based electrochromics. ACS Nano, 3759-3768(2018).

    [7] T MUKHIYA, G OJHA, B DAHAL et al. Designed assembly of porous cobalt oxide/carbon nanotentacles on electrospun hollow carbon nanofibers network for supercapacitor. ACS Applied Energy Materials, 3435-3444(2020).

    [8] X QIU, N WANG, X DONG et al. A high-voltage Zn-organic battery using a nonflammable organic electrolyte. Angewandte Chemie International Edition, 21025-21032(2021).

    [9] J KIM, J LEE, J YOU et al. Conductive polymers for next- generation energy storage systems: recent progress and new functions. Materials Horizons, 517-535(2016).

    [10] J CHEN, A NAVEED, Y NULI et al. Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 382-400(2020).

    [11] L DANG, C WICK. Anion effects on interfacial absorption of gases in ionic liquids: a molecular dynamics study. Journal of Physical Chemistry B, 6964-6970(2011).

    [12] J WILKES, M ZAWOROTKO. Air and water stable 1-ethyl-3- methylimidazolium based ionic liquids. Chemical Society Chemical Communications, 965-967(1992).

    [13] Y CHEN, X ZHANG, D ZHANG et al. High performance supercapacitors based on reducedgraphene oxide in aqueous and ionic liquid electrolytes. Carbon, 573-580(2011).

    [14] A BALDUCCI, R DUGAS, P TABERNA et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 922-927(2007).

    [15] J JIN, Z WEN, X LIANG et al. Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics, 604-607(2012).

    [16] D GELMAN, B SHVARTSEV, Y EIN-ELI. Aluminum-air battery based on an ionic liquidelectrolyte. Journal of Physical Chemistry A, 20237-20242(2014).

    [17] S KAZEMIABNAVI, Z ZHANG, K THORNTON et al. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. Journal of Physical Chemistry B, 5691-5702(2016).

    [18] K LI, Y SHAO, H YAN et al. Lattice-contraction triggered synchronous electrochromic actuator. Nature Communications,, 1-11(2018).

    [19] Z SUN, Y PENG, M WANG et al. Electrochemical deposition of Cu metal-organic framework films for the dual analysis of pathogens. Analytical Chemistry, 8994-9001(2021).

    [20] F WU, W FANG, X YANG et al. Two-dimensional-conjugated metal-organic framework with high electrical conductivity for electrochemical sensing. Journal of the Chinese Society, 522-528(2019).

    [21] J LIU, D YANG, Y ZHOU et al. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angewandte Chemie International Edition, 14473-14479(2021).

    [22] R LI, S LI, Q ZHANG et al. Layer-by-layer assembled triphenylene-based MOFs films for electrochromic electrode. Inorganic Chemistry Communications, 108354(2021).

    [23] T GUARR, C ANSON. Electropolymerization of ruthenium (bis (1, 10-phenanthroline) (4-methyl-4’-vinyl2, 2’-bipyridine) complexes through direct attack on the ligand ring system. Journal of Physical Chemistry, 4037-4043(1987).

    [24] H LIANG, R LI, C LI et al. Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Materials Horizons, 571-579(2019).

    [25] X SONG, X WANG, Y LI et al. 2D semiconducting metal-organic framework thin films for organic spin valves. Angewandte Chemie International Edition, 1118-1123(2020).

    [26] P NINAWE, K GUPTA, N BALLAV. Chemically integrating a 2D metal-organic framework with 2D functionalized graphene. Inorganic Chemistry, 19079-19085(2021).

    [27] F AMMAR, J SAVEANT. Convolution potential sweep voltammetry: Part IV. Homogenrous follow-up chemical-reactions. Journal of Electroanalytical Chemistry, 251-263(1975).

    Xiaoyu ZHANG, Yongsheng LIU, Ran LI, Yaogang LI, Qinghong ZHANG, Chengyi HOU, Kerui LI, Hongzhi WANG. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode [J]. Journal of Inorganic Materials, 2022, 37(8): 883
    Download Citation