• Photonics Research
  • Vol. 9, Issue 3, 324 (2021)
Ziyan Jia1, Zeng Chen2, Xu Chen1, Jizhong Yao3, Buyi Yan3, Rui Sheng3, Haiming Zhu2, and Yang (Michael) Yang1、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • 2Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
  • 3Hangzhou Microquanta Semiconductor Inc., Hangzhou 311121, China
  • show less
    DOI: 10.1364/PRJ.416229 Cite this Article Set citation alerts
    Ziyan Jia, Zeng Chen, Xu Chen, Jizhong Yao, Buyi Yan, Rui Sheng, Haiming Zhu, Yang (Michael) Yang. 19.34 cm2 large-area quaternary organic photovoltaic module with 12.36% certified efficiency[J]. Photonics Research, 2021, 9(3): 324 Copy Citation Text show less
    References

    [1] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270, 1789-1791(1995).

    [2] D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, N. Martin. Fullerene for organic electronics. Chem. Soc. Rev., 38, 1587-1597(2009).

    [3] Q. Wei, T. Nishizawa, K. Tajima, K. Hashimoto. Self-organized buffer layers in organic solar cells. Adv. Mater., 20, 2211-2216(2008).

    [4] P. P. Khlyabich, B. Burkhart, B. C. Thompson. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc., 133, 14534-14537(2011).

    [5] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, J. V. Manca. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater., 8, 904-909(2009).

    [6] J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropiano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S. R. Marder, D. Neher, D. Spoltore, K. Vandewal. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy, 2, 17053(2017).

    [7] B. Fan, X. Du, F. Liu, W. Zhong, L. Ying, R. Xie, X. Tang, K. An, J. Xin, N. Li, W. Ma, C. J. Brabec, F. Huang, Y. Cao. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy, 3, 1051-1058(2018).

    [8] J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3, 1140-1151(2019).

    [9] K. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, H. Yan. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 3, 3020-3033(2019).

    [10] L. Hong, H. Yao, Z. Wu, Y. Cui, T. Zhang, Y. Xu, R. Yu, Q. Liao, B. Gao, K. Xian, H. Y. Woo, Z. Ge, J. Hou. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater., 31, 1903441(2019).

    [11] Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater., 32, 1908205(2020).

    [12] Z. Jia, Z. Chen, X. Chen, L. Bai, H. Zhu, Y. M. Yang. Understanding of the nearly linear tunable open-circuit voltages in ternary organic solar cells based on two non-fullerene acceptors. J. Phys. Chem. Lett., 12, 151-156(2020).

    [13] Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding. 18% efficiency organic solar cells. Sci. Bull., 65, 272-275(2020).

    [14] J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng, Y. Li. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun., 11, 2726(2020).

    [15] Z. Luo, R. Ma, T. Liu, J. Yu, Y. Xiao, R. Sun, G. Xie, J. Yuan, Y. Chen, K. Chen, G. Chai, H. Sun, J. Min, J. Zhang, Y. Zou, C. Yang, X. Lu, F. Gao, H. Yan. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%. Joule, 4, 1236-1247(2020).

    [16] C. Zhu, J. Yuan, F. Cai, L. Meng, H. Zhang, H. Chen, J. Li, B. Qiu, H. Peng, S. Chen, Y. Hu, C. Yang, F. Gao, Y. Zou, Y. Li. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ. Sci., 13, 2459-2466(2020).

    [17] L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, H. Chen. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci., 13, 635-645(2020).

    [18] L. Liu, Y. Kan, K. Gao, J. Wang, M. Zhao, H. Chen, C. Zhao, T. Jiu, A. K. Jen, Y. Li. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater., 32, 1907604(2020).

    [19] T. Wang, R. Sun, M. Shi, F. Pan, Z. Hu, F. Huang, Y. Li, J. Min. Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach. Adv. Energy Mater., 10, 2000590(2020).

    [20] X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, F. Zhang. Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss. Adv. Energy Mater., 10, 2001404(2020).

    [21] Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, Y. Li. Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy, 78, 105272(2020).

    [22] T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, Y. Yang. Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+. Sol. RRL, 4, 1900467(2019).

    [23] Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, Y. Yang. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics, 9, 190-198(2015).

    [24] J. Hou, O. Inganas, R. H. Friend, F. Gao. Organic solar cells based on non-fullerene acceptors. Nat. Mater., 17, 119-128(2018).

    [25] G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev., 118, 3447-3507(2018).

    [26] W. Huang, P. Cheng, Y. M. Yang, G. Li, Y. Yang. High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv. Mater., 30, 1705706(2018).

    [27] R. Yu, H. Yao, J. Hou. Recent progress in ternary organic solar cells based on nonfullerene acceptors. Adv. Energy Mater., 8, 1702814(2018).

    [28] J. Lee, S. M. Lee, S. Chen, T. Kumari, S. H. Kang, Y. Cho, C. Yang. Organic photovoltaics with multiple donor-acceptor pairs. Adv. Mater., 31, 1804762(2019).

    [29] X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai, F. Tao, J. Chen, X. Chen, T. Liu, X. Xu, C. Yang, W. Shen, W. E. I. Sha, H. Zhu, Y. Yang. Efficient and reproducible monolithic perovskite/organic Tandem solar cells with low-loss interconnecting layers. Joule, 4, 1594-1606(2020).

    [30] W. Li, D. Yan, F. Liu, T. Russell, C. Zhan, J. Yao. High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport. Sci. China Chem., 61, 1609-1618(2018).

    [31] Z. Bi, H. B. Naveed, X. Sui, Q. Zhu, X. Xu, L. Gou, Y. Liu, K. Zhou, L. Zhang, F. Zhang, X. Liu, W. Ma. Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells. Nano Energy, 66, 104176(2019).

    [32] X. Ma, J. Wang, Q. An, J. Gao, Z. Hu, C. Xu, X. Zhang, Z. Liu, F. Zhang. Highly efficient quaternary organic photovoltaics by optimizing photogenerated exciton distribution and active layer morphology. Nano Energy, 70, 104496(2020).

    [33] R. Yu, H. Yao, Y. Cui, L. Hong, C. He, J. Hou. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv. Mater., 31, 1902302(2019).

    [34] T. Yan, W. Song, J. Huang, R. Peng, L. Huang, Z. Ge. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater., 31, 1902210(2019).

    [35] J. Lee, Y. H. Seo, S. N. Kwon, D. H. Kim, S. Jang, H. Jung, Y. Lee, H. Weerasinghe, T. Kim, J. Y. Kim, D. Vak, S. I. Na. Slot-die and roll-to-roll processed single junction organic photovoltaic cells with the highest efficiency. Adv. Energy Mater., 9, 1901805(2019).

    [36] C.-Y. Liao, Y. Chen, C.-C. Lee, G. Wang, N.-W. Teng, C.-H. Lee, W.-L. Li, Y.-K. Chen, C.-H. Li, H.-L. Ho, P. H.-S. Tan, B. Wang, Y.-C. Huang, R. M. Young, M. R. Wasielewski, T. J. Marks, Y.-M. Chang, A. Facchetti. Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule, 4, 189-206(2020).

    [37] X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing, Z. Huang, C. Liu, L. Tan, W. Zhou, Y. Sun, W. Ma, Y. Chen. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater., 31, 1903649(2019).

    [38] S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang. Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule, 4, 2004-2016(2020).

    [39] R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu, B. Qiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, J. Min. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule, 4, 407-419(2020).

    Ziyan Jia, Zeng Chen, Xu Chen, Jizhong Yao, Buyi Yan, Rui Sheng, Haiming Zhu, Yang (Michael) Yang. 19.34 cm2 large-area quaternary organic photovoltaic module with 12.36% certified efficiency[J]. Photonics Research, 2021, 9(3): 324
    Download Citation