• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207001 (2018)
Shi Zhao1, Li Lizhu1, Zhao Yu1, Fu Ruxing2, and Sheng Xing1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207001 Cite this Article Set citation alerts
    Shi Zhao, Li Lizhu, Zhao Yu, Fu Ruxing, Sheng Xing. Implantable Optoelectronic Devices and Systems for Biomedical Application[J]. Chinese Journal of Lasers, 2018, 45(2): 207001 Copy Citation Text show less
    References

    [1] Humar M, Kwok S J, Choi M et al. Toward biomaterial-based implantable photonic devices[J]. Nanophotonics, 6, 414-434(2017). http://adsabs.harvard.edu/abs/2017Nanop...6....3H

    [2] Parashurama N. O'Sullivan T D, de La Zerda A, et al. Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor[J]. Journal of Biomedical Optics, 17, 345-352(2012).

    [3] Flusberg B A, Nimmerjahn A, Cocker E D et al. High-speed, miniaturized fluorescence microscopy in freely moving mice[J]. Nature Methods, 5, 935-938(2008). http://www.nature.com/nmeth/journal/v5/n11/abs/nmeth.1256.html

    [4] O'Sullivan T D. Heitz R T, Parashurama N, et al. Real-time, continuous, fluorescence sensing in a freely-moving subject with an implanted hybrid VCSEL/CMOS biosensor[J]. Biomedical Optics Express, 4, 1332-1341(2013). http://www.opticsinfobase.org/abstract.cfm?URI=boe-4-8-1332

    [5] Bellis S, Jackson J C, Mathewson A. Towards a disposable in vivo miniature implantable fluorescence detector[C]. SPIE, 6083, 60830N(2006).

    [6] Rogers J A. Electronics for the human body[J]. The Journal of the American Medical Association, 313, 561-562(2015). http://www.ncbi.nlm.nih.gov/pubmed/25668256

    [7] Park S, Guo Y, Jia X et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017). http://www.ncbi.nlm.nih.gov/pubmed/28218915

    [8] Kim T I, Bruchas M R. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 340, 211-216(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3769938/

    [9] Ko H C, Stoykovich M P, Song J et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 454, 748-753(2008). http://www.nature.com/nature/journal/v454/n7205/abs/nature07113.html

    [10] Ohta J, Ohta Y, Takehara H et al. Implantable microimaging device for observing brain activities of rodents[J]. Proceedings of the IEEE, 105, 158-166(2017). http://ieeexplore.ieee.org/document/7524734/

    [11] Park S I, Brenner D S, Shin G et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 33, 1280-1286(2015). http://www.nature.com/nbt/journal/v33/n12/abs/nbt.3415.html

    [13] Zhang F, Gradinaru V, Adamantidis A et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures[J]. Nature protocols, 5, 439-456(2010). http://www.ncbi.nlm.nih.gov/pubmed/20203662

    [14] Cao H, Gu L, Mohanty S K et al. An integrated μLED optrode for optogenetic stimulation and electrical recording[J]. IEEE Transactions on Bio-Medical Engineering, 60, 225-229(2013). http://ieeexplore.ieee.org/document/6296693/

    [15] Kobayashi T, Motoyama M, Masuda H et al. Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex[J]. Biosensors and Bioelectronics, 38, 321-330(2012). http://www.sciencedirect.com/science/article/pii/S0956566312003946

    [16] Tokuda T, Hiyama K, Sawamura S et al. CMOS-based multichip networked flexible retinal stimulator designed for image-based retinal prosthesis[J]. IEEE Transactions on Electron Devices, 56, 2577-2585(2009). http://ieeexplore.ieee.org/document/5263041/

    [17] Bingger P, Fiala J, Seifert A et al. In vivo monitoring of blood oxygenation using an implantable MEMS-based sensor[C]. IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 1031-1034(2010).

    [18] Keiser G. Optical fiber communications[M]. New York: John Wiley & Sons(2003).

    [19] Jacques S L. Corrigendum: optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, 5007-5008(2013).

    [20] Deisseroth K. Optogenetics[J]. Nature Methods, 8, 26-29(2011).

    [21] Gradinaru V, Mogri M, Thompson K R et al. Optical deconstruction of parkinsonian neural circuitry[J]. Science, 324, 354-359(2009). http://www.ncbi.nlm.nih.gov/pubmed/19299587

    [22] Sparta D R, Stamatakis A M, Phillips J L et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits[J]. Nature Protocols, 7, 12-23(2011). http://www.nature.com/nprot/journal/v7/n1/abs/nprot.2011.413.html

    [23] Deisseroth Lab. Frontrat[EB/OL]. -4-14) [2017-9-5](2015). https://web.stanford.edu/group/ dlab/media/layout/frontrat.png.

    [24] Pisanello F, Sileo L, Oldenburg I A et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics[J]. Neuron, 82, 1245-1254(2014). http://europepmc.org/abstract/med/24881834

    [25] Chen Q, Cichon J, Wang W et al. Imaging neural activity using Thy1-GCaMP transgenic mice[J]. Neuron, 76, 297-308(2012). http://europepmc.org/articles/PMC4059513

    [26] Gunaydin L A, Grosenick L, Finkelstein J C et al. Natural neural projection dynamics underlying social behavior[J]. Cell, 157, 1535-1551(2014). http://europepmc.org/articles/PMC4123133/

    [27] Sridharan A, Rajan S D, Muthuswamy J. Long-term changes in the material properties of brain tissue at the implant-tissue interface[J]. Journal of Neural Engineering, 10, 066001(2013). http://www.ncbi.nlm.nih.gov/pubmed/24099854

    [28] Grosenick L, Marshel J H, Deisseroth K. Closed-loop and activity-guided optogenetic control[J]. Neuron, 86, 106-139(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4775736/

    [29] Gilletti A, Muthuswamy J. Brain micromotion around implants in the rodent somatosensory cortex[J]. Journal of Neural Engineering, 3, 189-195(2006). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ029004952

    [30] Canales A, Jia X, Froriep U P et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 33, 277-284(2015). http://europepmc.org/abstract/med/25599177

    [31] Lu C, Froriep U P, Koppes R A et al. Polymer fiber probes enable optical control of spinal cord and muscle function in vivo[J]. Advanced Functional Materials, 24, 6594-6600(2014). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201401266/pdf

    [32] Lu C, Park S, Richner T J et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 3, e1600955(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5371423/

    [33] Choi M, Choi J W, Kim S et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo[J]. Nature Photonics, 7, 987-994(2013). http://www.nature.com/nphoton/journal/v7/n12/abs/nphoton.2013.278.html

    [34] Choi M, Humar M, Kim S et al. Step-index optical fiber made of biocompatible hydrogels[J]. Advanced Materials, 27, 4081-4086(2015). http://onlinelibrary.wiley.com/doi/10.1002/adma.201501603/pdf

    [35] Nizamoglu S, Gather M C, Humar M et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine[J]. Nature Communications, 7, 10374(2016). http://europepmc.org/articles/PMC4735646/

    [36] Parker S T, Domachuk P, Amsden J et al. Biocompatible silk printed optical waveguides[J]. Advanced Materials, 21, 2411-2415(2009). http://onlinelibrary.wiley.com/doi/10.1002/adma.200801580/pdf

    [37] Ceci-Ginistrelli E, Pugliese D, Boetti N G et al. Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber[J]. Optical Materials Express, 6, 2040-2051(2016). http://www.researchgate.net/publication/303469582_Novel_biocompatible_and_resorbable_UV-transparent_phosphate_glass_based_optical_fiber

    [38] Guo J, Liu X, Jiang N et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 28, 10244-10249(2016). http://europepmc.org/abstract/med/27714887

    [39] Yetisen A K, Jiang N, Fallahi A et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials, 29, 1606380(2017). http://onlinelibrary.wiley.com/doi/10.1002/adma.201606380/pdf

    [40] Gentile P, Chiono V, Carmagnola I et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering[J]. International Journal of Molecular Sciences, 15, 3640-3659(2014). http://www.ncbi.nlm.nih.gov/pubmed/24590126

    [41] Lopes M S, Jardini A L, Filho R M. Poly (lactic acid) production for tissue engineering applications[J]. Procedia Engineering, 42, 1402-1413(2012). http://www.sciencedirect.com/science/article/pii/S1877705812029414

    [42] Hwang S W, Tao H, Kim D H et al. A physically transient form of silicon electronics[J]. Science, 337, 1640-1644(2012). http://www.ncbi.nlm.nih.gov/pubmed/23019646

    [43] Kang S K, Murphy R K, Hwang S W et al. Bioresorbable silicon electronic sensors for the brain[J]. Nature, 530, 71-76(2016). http://www.nature.com/nature/journal/v530/n7588/abs/nature16492.html

    [44] Tao H, Kainerstorfer J M, Siebert S M et al. Implantable, multifunctional, bioresorbable optics[J]. Proceedings of the National Academy of Sciences of United States of America, 109, 19584-19589(2012).

    [45] Dupuis A, Guo N, Gao Y et al. Prospective for biodegradable microstructured optical fibers[J]. Optics Letters, 32, 109-111(2007). http://www.ncbi.nlm.nih.gov/pubmed/17186033

    [46] Menard E, Lee K J, Khang D Y et al. A printable form of silicon for high performance thin film transistors on plastic substrates[J]. Applied Physics Letters, 84, 5398-5400(2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4873323

    [47] Ko H C, Baca A J, Rogers J A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers[J]. Nano Letters, 6, 2318-2324(2006). http://pubs.acs.org/doi/abs/10.1021/nl061846p

    [48] Kim T, Jung Y H, Song J et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates[J]. Small, 8, 1643-1649(2012). http://www.ncbi.nlm.nih.gov/pubmed/22467223

    [49] Kim H, Brueckner E, Song J et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting[J]. Proceedings of the National Academy of Sciences of United States of America, 108, 10072-10077(2011). http://europepmc.org/articles/PMC3121821

    [50] Lee J W, Tak Y, Kim J Y et al. Growth of high-quality InGaN/GaN LED structures on (111) Si substrates with internal quantum efficiency exceeding 50%[J]. Journal of Crystal Growth, 315, 263-266(2011).

    [51] Chang C Y, Kai F. GaAs high-speed devices[M]. New York: John Wiley & Sons(1994).

    [52] Yoon J, Jo S, Chun I S et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies[J]. Nature, 465, 329-333(2010). http://www.ncbi.nlm.nih.gov/pubmed/20485431

    [53] Kim D H, Ahn J H, Choi W M et al. Stretchable and foldable silicon integrated circuits[J]. Science, 320, 507-511(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000017000018000117000001&idtype=cvips&gifs=Yes

    [54] Kim D H, Kim Y S, Wu J et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper[J]. Advanced Materials, 21, 3703-3707(2009).

    [55] Baca A J, Yu K J, Xiao J et al. Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs[J]. Energy & Environmental Science, 3, 208-211(2010). http://pubs.rsc.org/EN/content/articlehtml/2010/ee/b920862c

    [56] Park S I, Xiong Y, Kim R H et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays[J]. Science, 325, 977-981(2009). http://www.ncbi.nlm.nih.gov/pubmed/19696346/

    [57] Sheng X, Yun M H, Zhang C et al. Device architectures for enhanced photon recycling in thin-film multijunction solar cells[J]. Advanced Energy Materials, 5, 1400919(2015). http://onlinelibrary.wiley.com/doi/10.1002/aenm.201400919/pdf

    [58] Sheng X, Robert C, Wang S et al. Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material[J]. Laser & Photonics Reviews, 9, L17-L22(2015). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201500016/pdf

    [59] Meitl M A, Zhu Z T, Kumar V et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp[J]. Nature Materials, 5, 33-38(2006). http://www.nature.com/nmat/journal/v5/n1/abs/nmat1532.html

    [60] Kim R H, Kim S, Song Y M et al. Flexible vertical light emitting diodes[J]. Small, 8, 3123-3128(2012). http://onlinelibrary.wiley.com/doi/10.1002/smll.201201195/full

    [61] Stankovich S, Dikin D A, Piner R D et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 45, 1558-1565(2007). http://www.sciencedirect.com/science/article/pii/S0008622307000917

    [62] Khang D Y, Jiang H Q, Huang Y et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 311, 208-212(2006).

    [63] Choi W M, Song J, Khang D Y et al. Biaxially stretchable "wavy" silicon nanomembranes[J]. Nano Letters, 7, 1655-1663(2007). http://pubs.acs.org/doi/10.1021/nl0706244

    [64] Kim D H, Song J, Choi W M et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations[J]. Proceedings of the National Academy of Sciences of United States of America, 105, 18675-18680(2008). http://www.jstor.org/stable/25465525

    [65] Kim T H, Carlson A, Ahn J H et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps[J]. Applied Physics Letters, 94, 113502(2009).

    [66] Lee J, Wu J, Shi M et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage[J]. Advanced Materials, 23, 986-991(2011). http://europepmc.org/abstract/MED/21226014

    [67] Hu X, Krull P, De Graff B et al. Stretchable inorganic-semiconductor electronic systems[J]. Advanced Materials, 23, 2933-2936(2011). http://www.ncbi.nlm.nih.gov/pubmed/21538588

    [68] Fan J A, Yeo W H, Su Y et al. Fractal design concepts for stretchable electronics[J]. Nature Communications, 5, 3266(2014). http://www.ncbi.nlm.nih.gov/pubmed/24509865

    [69] Kim D H, Kim Y S, Amsden J et al. Silicon electronics on silk as a path to bioresorbable, implantable devices[J]. Applied Physics Letters, 95, 133701(2009). http://www.ncbi.nlm.nih.gov/pubmed/20145699

    [70] Kim R H, Kim D H, Xiao J et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics[J]. Nature Materials, 9, 929-937(2010). http://www.ncbi.nlm.nih.gov/pubmed/20953185

    [71] Kim J, Banks A, Cheng H et al. Epidermal electronics with advanced capabilities in near-field communication[J]. Small, 11, 906(2015). http://europepmc.org/abstract/MED/25367846

    [72] Kim D H, Viventi J, Amsden J J et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nature Materials, 9, 511-517(2010). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034223/

    [73] Xu L, Gutbrod S R, Bonifas A P et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium[J]. Nature Communications, 5, 3329(2014). http://www.ncbi.nlm.nih.gov/pubmed/24569383

    [74] Dufour S, De K Y. Optrodes for combined optogenetics and electrophysiology in live animals[J]. Neurophotonics, 2, 031205(2015). http://www.ncbi.nlm.nih.gov/pubmed/26158014

    [75] Adamantidis A R, Zhang F, Aravanis A M et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 450, 420-424(2007). http://europepmc.org/abstract/MED/17943086

    [76] Ung K, Arenkiel B R. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue[J]. Journal of Visualized Experiments, 68, e50004(2012). http://www.ncbi.nlm.nih.gov/pubmed/23128465

    [77] Voigts J, Siegle J H, Pritchett D L et al. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice[J]. Frontiers in Systems Neuroscience, 7, 8(2013). http://europepmc.org/articles/PMC3652307/

    [78] Pisanello F, Sileo L, Patria A D et al. Multipoint optogenetic control of neural activity with tapered and nanostructured optical fibers[C]. IEEE Microwave Symposium, 1-4(2016).

    [79] Szabo V. Optogenetics in freely behaving mice with a fiberscope[D]. Paris: Paris DescartesUniversity(2013).

    [80] Ghosh K K, Burns L D, Cocker E D et al. Miniaturized integration of a fluorescence microscope[J]. Nature Methods, 8, 871-878(2011). http://europepmc.org/articles/PMC3810311/

    [81] Murari K, Etienne-Cummings R, Cauwenberghs G et al. An integrated imaging microscope for untethered cortical imaging in freely-moving animals[C]. Engineering in Medicine and Biology Society (EMBC), 5795-5798(2010).

    [82] Zong W, Wu R, Li M et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 14, 713-719(2017). http://www.nature.com/nmeth/journal/v14/n7/nmeth.4305/metrics

    [83] Wang S, Buch A, Hussaini S A et al. Focused ultrasound facilitated adenoviral delivery for optogenetic stimulation[C]. Ultrasonics Symposium, 1-4(2015).

    [84] Wang S, Kugelman T, Buch A et al. Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics[J]. Scientific Reports, 7, 39955(2017). http://www.ncbi.nlm.nih.gov/pubmed/28059117

    [85] Lu X, Wang P, Niyato D et al. Wireless charging technologies: fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 18, 1413-1452(2015). http://ieeexplore.ieee.org/document/7327131/

    [86] Zhang L, Hu X, Wang Z et al. A review of supercapacitor modeling, estimation, and applications: a control/management perspective[J]. Renewable and Sustainable Energy Reviews, 81, 1868-1878(2017). http://www.sciencedirect.com/science/article/pii/S1364032117309292

    [87] Hashimoto M, Hata A, Miyata T et al. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice[J]. Gene, 1, 36-40(2014). http://europepmc.org/articles/PMC4478966

    [89] Park S I, Shin G, Banks A et al. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics[J]. Journal of Neural Engineering, 12, 056002(2015). http://www.ncbi.nlm.nih.gov/pubmed/26193450

    [90] Yin L, Huang X, Xu H et al. Materials, designs, and operational characteristics for fully biodegradable primary batteries[J]. Advanced Materials, 26, 3879-3884(2014). http://onlinelibrary.wiley.com/doi/10.1002/adma.201306304/full

    [91] Yazdi A A, Preite R, Milton R D et al. Rechargeable membraneless glucose biobattery: towards solid-state cathodes for implantable enzymatic devices[J]. Journal of Power Sources, 343, 103-108(2017). http://www.sciencedirect.com/science/article/pii/S0378775317300320

    [94] Strasser M, Aigner R, Lauterbach C et al. Micromachined CMOS thermoelectric generators as on-chip power supply[J]. Sensors and Actuators A: Physical, 114, 362-370(2004). http://www.sciencedirect.com/science/article/pii/S092442470300712X

    [95] Lu B, Chen Y, Ou D et al. Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy[J]. Scientific Reports, 5, 16065(2015). http://europepmc.org/articles/PMC4633610/

    [96] Guido F, Qualtieri A, Algieri L et al. AlN-based flexible piezoelectric skin for energy harvesting from human motion[J]. Microelectronic Engineering, 159, 174-178(2016). http://www.sciencedirect.com/science/article/pii/S016793171630154X

    [97] Montgomery K L, Yeh A J, Ho J S et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nature Methods, 12, 969(2015). http://www.nature.com/nmeth/journal/v12/n10/abs/nmeth.3536.html

    [98] Park S I, Shin G, Mccall J G et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics[J]. Proceedings of the National Academy of Sciences of United States of America, 113, E8169(2016). http://europepmc.org/articles/PMC5167187/?report=abstract

    [99] Hussain A M, Ghaffar F A, Park S I et al. Metal/polymer based stretchable antenna for constant frequency far-field communication in wearable electronics[J]. Advanced Functional Materials, 25, 6565-6575(2015). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201503277/pdf

    [100] Kim J, Salvatore G A, Araki H et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin[J]. Science Advances, 2, e1600418(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4972468/

    [101] Seo D, Neely R M, Shen K et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust[J]. Neuron, 91, 529(2016). http://www.ncbi.nlm.nih.gov/pubmed/27497221

    [102] Shin G, Gomez A M, Al-Hasani R et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics[J]. Neuron, 93, 509(2017). http://europepmc.org/abstract/MED/28132830

    [103] Assawaworrarit S, Yu X, Fan S et al. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit[J]. Nature, 546, 387-390(2017). http://europepmc.org/abstract/MED/28617463

    [104] Gagnonturcotte G, Kisomi A, Ameli R et al. A wireless optogenetic headstage with multichannel electrophysiological recording capability[J]. Sensors, 15, 22776-22797(2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610520/

    [105] Wentz C T, Bernstein J G, Monahan P E et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals[J]. Journal of Neural Engineering, 8, 046021(2011). http://ijnp.oxfordjournals.org/lookup/external-ref?access_num=10.1088/1741-2560/8/4/046021&link_type=DOI

    [106] Steiner M S, Duerkop A, Wolfbeis O S. Optical methods for sensing glucose[J]. Chemical Society Reviews, 40, 4805-4839(2011). http://www.ncbi.nlm.nih.gov/pubmed/21674076

    [107] So C F, Choi K S, Wong T K et al. Recent advances in noninvasive glucose monitoring[J]. Medical Devices, 5, 45-52(2012). http://europepmc.org/articles/PMC3500977

    [108] Shults M C, Rhodes R K, Updike S J et al. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors[J]. IEEE Transactions on Bio-Medical Engineering, 41, 937-942(1994). http://www.europepmc.org/abstract/MED/7959800

    [109] Ahmadi M M, Jullien G A. A wireless-implantable microsystem for continuous blood glucose monitoring[J]. IEEE transactions on biomedical circuits and systems, 3, 169-180(2009). http://europepmc.org/abstract/med/23853218

    [110] Liao Y T, Yao H, Lingley A et al. A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring[J]. IEEE Journal of Solid-State Circuits, 47, 335-344(2012). http://ieeexplore.ieee.org/document/6071020/

    [111] Chu M X, Miyajima K, Takahashi D et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment[J]. Talanta, 83, 960-965(2011). http://www.ncbi.nlm.nih.gov/pubmed/21147344

    [112] Heo Y J, Shibata H, Okitsu T et al. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers[J]. Proceedings of the National Academy of Sciences of United States of America, 108, 13399-13403(2011). http://www.ncbi.nlm.nih.gov/pubmed/21808049

    [113] Ruckh T T, Clark H A. Implantable nanosensors: toward continuous physiologic monitoring[J]. Analytical Chemistry, 86, 1314-1323(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4106471/

    [114] Kanukurthy K, Cover M B, Andersen D R. Data acquisition unit for an implantable multi-channel optical glucose sensor[J]. Integrated Computer Aided Engineering, 15, 109-130(2008). http://dl.acm.org/citation.cfm?id=1367167

    [115] Chang Y W, Yu P C, Huang Y T et al. A high-sensitivity CMOS-compatible biosensing system based on absorption photometry[J]. IEEE Sensors Journal, 9, 120-127(2009). http://ieeexplore.ieee.org/document/4749398/

    [116] Fard S T, Hofmann W, Fard P T et al. Optical absorption glucose measurements using 2.3 μm vertical-cavity semiconductor lasers[J]. IEEE Photonics Technology Letters, 20, 930-932(2008). http://ieeexplore.ieee.org/document/4515989/

    [117] Shen Y C, Davies A G, Linfield E H et al. Determination of glucose concentration in whole blood using Fourier-transform infrared spectroscopy[J]. Journal of Biological Physics, 29, 129-133(2003). http://link.springer.com/article/10.1023/A%3A1024480423056

    [118] Li D M, Jia S H. Application of BP artificial neural network in blood glucose prediction based on multi-spectrum[J]. Laser and Optoelectronics Progress, 54, 031703(2017).

    [119] Yu Y, Crothall K D, Jahn L G et al. Laser diode applications in a continuous blood glucose sensor[C]. SPIE, 4996, 268-274(2003).

    [120] Trabelsi A, Boukadoum M, Siaj M. A preliminary investigation into the design of an implantable optical blood glucose sensor[J]. American Journal of Biomedical Engineering, 1, 62-67(2011). http://www.oalib.com/paper/1363565

    [121] Khan F, Gnudi L, Pickup J C. Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: a comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies[J]. Biochemical and Biophysical Research Communications, 365, 102-106(2008).

    [122] Ballerstadt R, Evans C, Gowda A et al. In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring[J]. Diabetes Technology & Therapeutics, 8, 296-311(2006). http://europepmc.org/abstract/MED/16800751

    [123] Chaudhary A. McShane M J, Srivastava R. Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor[J]. Analyst, 135, 2620-2628(2010).

    [124] Pasic A, Koehler H, Klimant I et al. Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue[J]. Sensors and Actuators B: Chemical, 122, 60-68(2007). http://www.sciencedirect.com/science/article/pii/S0925400506003844

    [125] Valdastri P, Susilo E, Forster T et al. Wireless implantable electronic platform for chronic fluorescent-based biosensors[J]. IEEE Transactions on Bio-Medical Engineering, 58, 1846-1854(2011). http://www.ncbi.nlm.nih.gov/pubmed/21385666

    [126] Shibata H, Tsuda Y, Kawanishi T et al. Implantable fluorescent hydrogel for continous blood glucose monitoring[C]. Solid-State Sensors, Actuators and Microsystems Conference, 1453-1456(2009).

    [127] Tokuda T, Takahashi M, Uejima K et al. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel[J]. Biomedical Optics Express, 5, 3859-3870(2014). http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-5-11-3859

    [128] Kearney P M, Whelton M, Reynolds K et al. Global burden of hypertension: analysis of worldwide data[J]. The lancet, 365, 217-223(2005). http://qjmed.oxfordjournals.org/lookup/external-ref?access_num=15652604&link_type=MED&atom=%2Fqjmed%2F105%2F1%2F11.atom

    [129] Whitesall S E, Hoff J B, Vollmer A P et al. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods[J]. American Journal of Physiology-Heart and Circulatory Physiology, 286, H2408-H2415(2004). http://europepmc.org/abstract/MED/14962829

    [130] Potkay J A. Long term, implantable blood pressure monitoring systems[J]. Biomedical Microdevices, 10, 379-392(2008). http://europepmc.org/abstract/MED/18095169

    [131] Fiala J, Bingger P, Ruh D et al. An implantable optical blood pressure sensor based on pulse transit time[J]. Biomedical Microdevices, 15, 73-81(2013). http://www.ncbi.nlm.nih.gov/pubmed/23053446

    [132] Thomas J G. A method for continuously indicating blood pressure[J]. The Journal of Physiology, 129, 75-76(1955). http://www.ncbi.nlm.nih.gov/pubmed/13264162

    [133] Millasseau S C, Ritter J M, Takazawa K et al. Contour analysis of the photoplethysmographic pulse measured at the finger[J]. Journal of Hypertension, 24, 1449-1456(2006). http://www.ncbi.nlm.nih.gov/pubmed/16877944

    [134] Turcott R G, Pavek T J. Hemodynamic sensing using subcutaneous photoplethysmography[J]. American Journal of Physiology-Heart and Circulatory Physiology, 295, H2560-H2572(2008). http://www.ncbi.nlm.nih.gov/pubmed/18849335

    [135] Theodor M, Ruh D, Fiala J et al. Subcutaneous blood pressure monitoring with an implantable optical sensor[J]. Biomedical Microdevices, 15, 811-820(2013). http://link.springer.com/article/10.1007/s10544-013-9768-6

    [136] Webb R K, Ralston A C, Runciman W B. Potential errors in pulse oximetry[J]. Anaesthesia, 46, 207-212(1991).

    [137] Beiderman M, Tam T, Fish A et al. A low-light CMOS contact imager with an emission filter for biosensing applications[J]. IEEE transactions on biomedical circuits and systems, 2, 193-203(2008). http://www.ncbi.nlm.nih.gov/pubmed/23852969

    [138] Huber D, Gutnisky D A, Peron S et al. Multiple dynamic representations in the motor cortex during sensorimotor learning[J]. Nature, 484, 473-478(2012). http://www.nature.com/nature/journal/v484/n7395/abs/nature11039.html

    [139] Dombeck D A, Khabbaz A N, Collman F et al. Imaging large-scale neural activity with cellular resolution in awake, mobile mice[J]. Neuron, 56, 43-57(2007). http://europepmc.org/articles/PMC2268027/

    [140] Mukamel E A, Nimmerjahn A, Schnitzer M J. Automated analysis of cellular signals from large-scale calcium imaging data[J]. Neuron, 63, 747-760(2009). http://www.cell.com/neuron/abstract/S0896-6273(09)00619-9

    [141] Andermann M L, Kerlin A M, Reid R C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing[J]. Frontiers in Cellular Neuroscience, 4, 3(2010). http://europepmc.org/articles/PMC2854571/

    [142] Nimmerjahn A, Mukamel E A, Schnitzer M J. Motor behavior activates Bergmann glial networks[J]. Neuron, 62, 400-412(2009). http://labs.europepmc.org/abstract/MED/19447095

    [143] An K, Wang J, Liang D et al. Improving lateral resolution of light sheet fluorescence microscopy with SOFI method[J]. Chinese Journal of Lasers, 44, 0607002(2017).

    [144] Helmchen F, Fee M S, Tank D W et al. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals[J]. Neuron, 31, 903-912(2001). http://www.ncbi.nlm.nih.gov/pubmed/11580892

    [145] Helmchen F. Miniaturization of fluorescence microscopes using fibre optics[J]. Experimental Physiology, 87, 737-745(2002). http://journals.cambridge.org/abstract_S0958067001024782

    [146] Mehta A D, Jung J C, Flusberg B A et al. Fiber optic in vivo imaging in the mammalian nervous system[J]. Current Opinion in Neurobiology, 14, 617-628(2004). http://pubmedcentralcanada.ca/pmcc/articles/pmid/15464896

    [147] O'Sullivan T. Munro E A, Parashurama N, et al. Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules[J]. Optics Express, 18, 12513-12525(2010).

    [148] O'Sullivan T D. Munro E, de la Zerda A, et al. Implantable optical biosensor for in vivo molecular imaging[C]. SPIE, 7173, 717309(2009).

    [149] Tokuda T, Tanaka K, Matsuo M et al. Optical and electrochemical dual-image CMOS sensor for on-chip biomolecular sensing applications[J]. Sensors and Actuators A: Physical, 135, 315-322(2007). http://www.sciencedirect.com/science/article/pii/S0924424706005577

    [150] Tokuda T, Noda T, Sasagawa K et al. Optical and electric multifunctional CMOS image sensors for on-chip biosensing applications[J]. Materials, 4, 84-102(2010). http://pubmedcentralcanada.ca/pmcc/articles/PMC5448479/

    [151] Tagawa A, Minami H, Mitani M et al. 49(1S): 01AG02[J]. electrical potential in deep brain of mouse. Japanese Journal of Applied Physics(2010).

    [152] Takehara H, Ohta Y, Motoyama M et al. Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue[J]. Biomedical Optics Express, 6, 1553-1564(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4467724/

    [153] Takehara H, Katsuragi Y, Ohta Y et al. Implantable micro-optical semiconductor devices for optical theranostics in deep tissue[J]. Applied Physics Express, 9, 047001(2016). http://adsabs.harvard.edu/abs/2016APExp...9d7001T

    [154] Kobayashi T, Masuda H, Kitsumoto C et al. Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system[J]. Biosensors and Bioelectronics, 53, 31-36(2014). http://europepmc.org/abstract/med/24121224

    [155] Kobayashi T, Haruta M, Sasagawa K et al. Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca 2+ fluoroimaging [J]. Scientific Reports, 6, 21247(2016). http://www.nature.com/articles/srep21247

    [156] Cogan S F. Neural stimulation and recording electrodes[J]. Annual Review of Biomedical Engineering, 10, 275-309(2008). http://europepmc.org/abstract/med/18429704

    [157] Butovas S, Schwarz C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings[J]. Journal of Neurophysiology, 90, 3024-3039(2003). http://www.ncbi.nlm.nih.gov/pubmed/12878710

    [158] Aravanis A M, Wang L P, Zhang F et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. Journal of Neural Engineering, 4, S143(2007). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=17873414

    [159] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005). http://www.nature.com/neuro/journal/v8/n9/abs/nn1525.html

    [160] Zorzos A N, Scholvin J, Boyden E S et al. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits[J]. Optics Letters, 37, 4841-4843(2012). http://www.ncbi.nlm.nih.gov/pubmed/23202064

    [161] Lee S T, Williams P A, Braine C E et al. A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator[J]. IEEE Transactions on Rehabilitation Engineering, 23, 655-664(2015). http://europepmc.org/abstract/MED/25608307

    [162] Wu F, Stark E, Ku P C et al. Monolithically integrated LEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals[J]. Neuron, 88, 1136-1148(2015). http://europepmc.org/abstract/MED/26627311

    [163] Nakajima A, Kimura H, Sawadsaringkarn Y et al. CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue[J]. Optics Express, 20, 6097-6108(2012). http://www.ncbi.nlm.nih.gov/pubmed/22418489

    [164] Bernstein J G, Han X, Henninger M A et al. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons[C]. SPIE, 6854, 68540H(2008).

    [165] Shao J, Xue S, Yu G et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice[J]. Science Translational Medicine, 9, l2298(2017). http://europepmc.org/abstract/MED/28446682

    [166] Mathieson K, Loudin J, Goetz G et al. Photovoltaic retinal prosthesis with high pixel density[J]. Nature Photonics, 6, 391-397(2012). http://www.ncbi.nlm.nih.gov/pubmed/23049619

    [167] Arthur W B. The nature of technology: what it is and how it evolves[M]. New York: Simon and Schuster(2009).

    [168] Liang J, Li L, Niu X et al. Elastomeric polymer light-emitting devices and displays[J]. Nature Photonics, 7, 817-824(2013). http://www.nature.com/nphoton/journal/v7/n10/abs/nphoton.2013.242.html

    [169] Ghosh A P, Gerenser L J, Jarman C M et al. Thin-film encapsulation of organic light-emitting devices[J]. Applied Physics Letters, 86, 223503(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4877407

    [170] Bansal A K, Hou S, Kulyk O et al. Wearable organic optoelectronic sensors for medicine[J]. Advanced Materials, 27, 7638-7644(2015).

    [171] Lewandowski B E, Kilgore K L, Gustafson K J. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power[J]. Annals of Biomedical Engineering, 35, 631-641(2007). http://link.springer.com/article/10.1007/s10439-007-9261-6

    [172] Contag C H, Bachmann M H. Advances in in vivo bioluminescence imaging of gene expression[J]. Annals of Biomedical Engineering, 4, 235-260(2002). http://europepmc.org/abstract/MED/12117758

    [173] Morais J M, Papadimitrakopoulos F, Burgess D J. Biomaterials/tissue interactions: possible solutions to overcome foreign body response[J]. The AAPS Journal, 12, 188-196(2010). http://link.springer.com/article/10.1208/s12248-010-9175-3

    Shi Zhao, Li Lizhu, Zhao Yu, Fu Ruxing, Sheng Xing. Implantable Optoelectronic Devices and Systems for Biomedical Application[J]. Chinese Journal of Lasers, 2018, 45(2): 207001
    Download Citation