• Journal of Geographical Sciences
  • Vol. 30, Issue 5, 843 (2020)
Xiaolong SONG1、2, Deyu ZHONG1、*, and Guangqian WANG1
Author Affiliations
  • 1State Key Laboratory of Hydro-science and Engineering, Tsinghua University, Beijing 100084, China
  • 2State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1007/s11442-020-1758-z Cite this Article
    Xiaolong SONG, Deyu ZHONG, Guangqian WANG. Simulation on the stochastic evolution of hydraulic geometry relationships with the stochastic changing bankfull discharges in the Lower Yellow River[J]. Journal of Geographical Sciences, 2020, 30(5): 843 Copy Citation Text show less
    The Gaocun-Sunkou reach of the Lower Yellow River
    Fig. 1. The Gaocun-Sunkou reach of the Lower Yellow River
    Comparison of the calculated and measured values of bankfull channel geometries in the Gaocun-Sunkou reach of the Lower Yellow River under the Model-1 condition
    Fig. 2. Comparison of the calculated and measured values of bankfull channel geometries in the Gaocun-Sunkou reach of the Lower Yellow River under the Model-1 condition
    Comparison of the calculated and measured values of bankfull channel geometries in the Gaocun-Sunkou reach of the Lower Yellow River under the Model-2 condition
    Fig. 3. Comparison of the calculated and measured values of bankfull channel geometries in the Gaocun-Sunkou reach of the Lower Yellow River under the Model-2 condition
    Comparison of the calculated and measured values of bankfull channel geometries in the Gaocun-Sunkou reach of the Lower Yellow River under the Model-3 condition
    Fig. 4. Comparison of the calculated and measured values of bankfull channel geometries in the Gaocun-Sunkou reach of the Lower Yellow River under the Model-3 condition
    The time-varying process of effective probabilistic stability thickness of hydraulic geometry in the Gaocun-Sunkou reach of the Lower Yellow River under the three model conditions
    Fig. 5. The time-varying process of effective probabilistic stability thickness of hydraulic geometry in the Gaocun-Sunkou reach of the Lower Yellow River under the three model conditions
    Comparison of stochastic average with measurements in the Gaocun-Sunkou reach of the Lower Yellow River under the three model conditions
    Fig. 6. Comparison of stochastic average with measurements in the Gaocun-Sunkou reach of the Lower Yellow River under the three model conditions
    The time-varying probability distribution of riverbed stability indices, hydraulic width/depth ratio and stream power in the Gaocun-Sunkou reach of the Lower Yellow River based on Fractional Jump-Diffusion model (13)
    Fig. 7. The time-varying probability distribution of riverbed stability indices, hydraulic width/depth ratio and stream power in the Gaocun-Sunkou reach of the Lower Yellow River based on Fractional Jump-Diffusion model (13)
    YearFlood season’s average value (*)Bankfull discharge Q (m3/s)Slope S (‰)Width B (m)Depth D (m)Velocity U (m/s)
    DischargeQf (m3/s)IS coefficient $\xi_{f}$(kg·s/m6)
    19522417.0730.008067000.1207501.481.57
    19532562.9670.015358000.112487.52.581.25
    19543531.8620.013255000.1044503.171.13
    19553218.5930.009554000.142711.51.541.57
    19562673.7400.015454200.1216522.190.96
    19571838.9840.019753000.125620.82.200.95
    19584190.6260.012355000.124719.51.321.07
    19592070.8540.035667000.1266841.101.47
    19601092.7540.034365000.121325.51.020.90
    19612729.5930.006172000.1034452.371.84
    19622232.0330.007978000.1145811.781.20
    19632926.1060.006585000.1105841.301.00
    19644969.2680.005295000.1131217.51.691.62
    19651534.8780.012398000.1286141.241.69
    19662898.6420.017685000.1399671.241.34
    19674232.6830.009160000.125957.51.801.80
    19683114.8210.011060000.1261618.81.161.63
    19691155.350.037850000.1173901.871.54
    19701675.9760.035943000.12410671.351.28
    19711385.220.033643000.123922.51.211.36
    19721205.6670.022339000.121493.50.830.92
    19731938.8410.028235000.121566.61.090.47
    19741164.1510.027133700.121610.51.221.76
    19753035.6750.011547100.118553.51.681.31
    19763137.3250.008860900.1175421.471.59
    19771627.4720.041965000.121366.11.321.15
    19781949.7560.026255000.113404.52.231.12
    19791945.1220.019952000.108312.13.091.38
    19801183.4470.022545000.120483.51.301.61
    19813011.6180.011439000.114412.72.251.39
    19822226.9110.009459000.1235381.531.64
    19833310.4070.006373000.117583.72.271.58
    19843127.6670.007074000.118551.51.661.68
    19852298.6910.011076000.113527.52.921.54
    19861207.0650.013874000.115529.51.900.57
    1987694.13820.021668000.114233.11.780.89
    19881915.2150.024464000.110353.52.581.53
    19891796.5450.015646000.111376.52.151.49
    19901233.3980.021745000.111363.22.311.39
    1991429.7350.052344000.121453.51.240.90
    19921168.780.038332000.1214651.031.07
    19931285.7640.020736000.1154601.181.25
    19941221.4390.039437000.1194691.201.22
    19951013.0870.046530000.1224860.961.09
    19961357.5560.023228000.119537.51.271.48
    1997299.51250.158927500.126410.51.100.94
    19988990.036627000.1223980.951.10
    1999779.29270.046828000.1214741.071.13
    2000443.14630.016126000.121500.51.060.91
    2001321.32280.023224000.1214861.011.26
    2002714.44720.014820000.1204461.081.20
    20031300.4140.011323000.118448.51.260.84
    2004818.29260.023936000.1154391.340.90
    2005897.5360.010440000.1155281.381.17
    2006806.0080.007945000.115431.51.331.24
    20071140.6740.005947000.1124911.621.24
    2008625.0400.009548000.113347.51.551.40
    2009646.4550.004150000.1165151.211.03
    20101166.4220.004553000.118518.51.050.99
    2011934.0650.005154000.1196681.231.04
    20121438.4950.005754000.120648.51.241.04
    20131219.8940.007658000.118533.51.271.10
    Table 1.

    Flood season’s average discharge, suspended sediment concentration, and annual measured bankfull channel geometries along the Gaocun station downwards

    EstimateKbc$ \beta$${{\sigma }_{1}}$$\gamma $
    Mean76.495-0.4770.2990.2130.1360.582
    SD23.8330.0440.0270.0180.0050.047
    Table 2.

    The estimated results of the unknown parameters set for the SDEs-Eq.(8a)

    EstimateSlope (S)Width (B)Depth (D)Velocity (U)
    mMean0.1840.7710.5600.424
    SD0.0380.2180.0920.068
    ${{\sigma }_{2}}$Mean0.0730.1430.2760.130
    SD0.1480.0470.0690.023
    Table 3.

    The estimated results of the unknown parameters set for the SDEs-Eq.(8b)

    EstimateKbc$\beta $${{\sigma }_{1}}$$\gamma $$\lambda _{u}^{[1]} $$\lambda _{d}^{[1]} $$1/\eta _{u}^{\left[ 1 \right]} $$1/\eta _{d}^{[1]} $
    Mean23.818-0.5050.4320.3120.1180.4940.0300.0200.2150.573
    SD4.7950.0250.0180.0020.0030.0030.0010.0040.0160.047
    Table 4.

    The estimated results of the unknown parameters set for the jump-diffusion Eq. (10a)

    EstimateSlope (S)Width (B)Depth (D)Velocity (U)
    mMean-0.0860.2640.3500.310
    SD0.0090.0430.0590.046
    ${{\sigma }_{2}}$Mean0.0750.3010.3000.160
    SD0.0140.0650.0650.055
    $\lambda _{u}^{[2]} $Mean0.1800.3000.3110.394
    SD0.0010.0140.0290.065
    $\lambda _{d}^{[2]} $Mean0.1800.3000.3270.426
    SD0.0040.0260.0540.025
    $1/\eta _{u}^{[2]} $Mean0.0590.0790.1800.080
    SD0.0010.0450.0250.004
    $1/\eta _{d}^{[2]} $Mean0.0300.1090.1750.177
    SD0.0090.0680.0270.062
    Table 5.

    The estimated results of the unknown parameters set for the jump-diffusion Eq. (10b)

    EstimateKbc$\beta $${{\sigma }_{1}}$$\gamma $${{H}^{[1]}} $$\lambda _{u}^{[1]} $$\lambda _{d}^{[1]} $$1/\eta _{u}^{\left[ 1 \right]} $$1/\eta _{d}^{[1]} $
    Mean25.14-0.520.420.290.110.230.550.090.060.040.15
    SD3.270.030.020.010.000.000.000.000.020.000.01
    Table 6.

    The estimated results of the unknown parameters set for the fractional jump-diffusion Eq. (13a)

    EstimateSlope (S)Width (B)Depth (D)Velocity (U)
    mMean-0.1410.7040.3500.880
    SD0.0110.0430.0260.063
    ${{\sigma }_{2}}$Mean0.0900.5000.6400.260
    SD0.0150.0350.0550.017
    ${{H}^{[2]}} $Mean0.4710.3490.4710.301
    SD0.0540.0130.0260.063
    $\lambda _{u}^{[2]} $Mean0.3740.4100.3610.554
    SD0.0720.0750.0260.064
    $\lambda _{d}^{[2]} $Mean0.3800.4100.3670.556
    SD0.0950.0750.0230.052
    $1/\eta _{u}^{[2]} $Mean0.0880.4880.3000.230
    SD0.0410.0480.0110.033
    $1/\eta _{d}^{[2]} $Mean0.0870.4530.1050.170
    SD0.0250.0640.0230.028
    Table 7.

    The estimated results of the unknown parameters set for the fractional jump-diffusion Eq. (13b)

    CorrelationZw$\zeta $$\Omega $Q
    Q0.0350.1400.5231
    Table 8.

    The correlation coefficients of time-varying stochastic average Zw, $\zeta $,$\Omega $ with Q

    Xiaolong SONG, Deyu ZHONG, Guangqian WANG. Simulation on the stochastic evolution of hydraulic geometry relationships with the stochastic changing bankfull discharges in the Lower Yellow River[J]. Journal of Geographical Sciences, 2020, 30(5): 843
    Download Citation