• Journal of Semiconductors
  • Vol. 42, Issue 12, 122002 (2021)
Xiaoshu Guo1 and Sandong Guo2
Author Affiliations
  • 1Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • 2School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • show less
    DOI: 10.1088/1674-4926/42/12/122002 Cite this Article
    Xiaoshu Guo, Sandong Guo. Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study[J]. Journal of Semiconductors, 2021, 42(12): 122002 Copy Citation Text show less
    References

    [1] L Zhang, Z Yang, T Gong et al. Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications. J Mater Chem A, 8, 8813(2020).

    [2] A Y Lu, H Y Zhu, J Xiao et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol, 12, 744(2017).

    [3] J Zhang, S Jia, I Kholmanov et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 11, 8192(2017).

    [4] S Singh, A H Romero. Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures. Phys Rev B, 95, 165444(2017).

    [5] S D Guo, X S Guo, R Y Han et al. Predicted Janus SnSSe monolayer: A comprehensive first-principles study. Phys Chem Chem Phys, 21, 24620(2019).

    [6] Y D Guo, H B Zhang, H L Zeng et al. A progressive metal–semiconductor transition in two-faced Janus monolayer transition-metal chalcogenides. Phys Chem Chem Phys, 20, 21113(2018).

    [7] R Peng, Y D Ma, B B Huang et al. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A, 7, 603(2019).

    [8] A Mogulkoc, Y Mogulkoc, S Jahangirov et al. Characterization and stability of Janus TiXY (X/Y = S, Se, and Te) monolayers. J Phys Chem C, 123, 29922(2019).

    [9] C M Zhang, Y H Nie, S Sanvito et al. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett, 19, 1366(2019).

    [10] Y C Cheng, Z Y Zhu, M Tahir et al. Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers. EPL, 102, 57001(2013).

    [11] M L Sun, Q Q Ren, S K Wang et al. Electronic properties of Janus silicene: New direct band gap semiconductors. J Phys D, 49, 445305(2016).

    [12] S D Guo, W Q Mu, Y T Zhu et al. Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J Mater Chem C, 9, 2464(2021).

    [13] L Dong, J Lou, V B Shenoy. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 11, 8242(2017).

    [14] M Yagmurcukardes, C Sevik, F M Peeters. Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study. Phys Rev B, 100, 045415(2019).

    [15] W H Zhou, S L Zhang, S Y Guo et al. Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: The case of two-dimensional BiN. Phys Rev Appl, 13, 044066(2020).

    [16] W H Zhou, S L Zhang, Y Y Wang et al. Anisotropic in-plane ballistic transport in monolayer black arsenic- phosphorus FETs. Adv Electron Mater, 6, 1901281(2020).

    [17] Y L Hong, Z Liu, L Wang et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 369, 670(2020).

    [18] L Wang, Y P Shi, M F Liu et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat Commun, 12, 2361(2021).

    [19] S Li, W K Wu, X L Feng et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys Rev B, 102, 235435(2020).

    [20] C Yang, Z G Song, X T Sun et al. Valley pseudospin in monolayer MoSi2N4 and MoSi2As4. Phys Rev B, 103, 035308(2021).

    [21] S D Guo, Y T Zhu, W Q Mu et al. Intrinsic piezoelectricity in monolayer MSi2N4 (M = Mo, W, Cr, Ti, Zr and Hf). EPL, 132, 57002(2020).

    [22] S D Guo, Y T Zhu, W Q Mu et al. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M = Mo and W). Comput Mater Sci, 188, 110223(2021).

    [23] S D Guo, W Q Mu, Y T Zhu et al. Coexistence of intrinsic piezoelectricity and ferromagnetism induced by small biaxial strain in septuple-atomic-layer VSi2P4. Phys Chem Chem Phys, 22, 28359(2020).

    [24] L M Cao, G H Zhou, Q Q Wang et al. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl Phys Lett, 118, 013106(2021).

    [25] J H Yu, J Zhou, X G Wan et al. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J Phys, 23, 033005(2021).

    [26] P Hohenberg, W Kohn. Inhomogeneous electron gas. Phys Rev, 136, B864(1964).

    [27] G Kresse. Ab initio molecular dynamics for liquid metals. J Non Cryst Solids, 192/193, 222(1995).

    [28] G Kresse, J Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 6, 15(1996).

    [29] G Kresse, D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 59, 1758(1999).

    [30] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [31] A Togo, F Oba, I Tanaka. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 78, 134106(2008).

    [32] U Herath, P Tavadze, X He et al. PyProcar: A Python library for electronic structure pre/post-processing. Comput Phys Commun, 251, 107080(2020).

    [33] X F Wu, D Vanderbilt, D R Hamann. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys Rev B, 72, 035105(2005).

    [34] G Y Guo, K C Chu, D S Wang et al. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys Rev B, 69, 205416(2004).

    [35] R C Andrew, R E Mapasha, A M Ukpong et al. Erratum: Mechanical properties of graphene and boronitrene [Phys. Rev. B 85, 125428 (2012)]. Phys Rev B, 69, 205416(2004).

    [36] M N Blonsky, H L Zhuang, A K Singh et al. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano, 9, 9885(2015).

    [37] R X Fei, W B Li, J Li et al. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett, 107, 173104(2015).

    [38] K A N Duerloo, M T Ong, E J Reed. Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett, 3, 2871(2012).

    [39] Z Q Fan, X W Jiang, Z M Wei et al. Tunable electronic structures of GeSe nanosheets and nanoribbons. J Phys Chem C, 121, 14373(2017).

    [40] X X Xue, Y X Feng, L Liao et al. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J Phys: Condens Matter, 30, 125001(2018).

    [41] S D Guo, J Dong. Biaxial strain tuned electronic structures and power factor in Janus transition metal dichalchogenide monolayers. Semicond Sci Technol, 33, 085003(2018).

    [42] M Gajdoš, K Hummer, G Kresse et al. Linear optical properties in the projector-augmented wave methodology. Phys Rev B, 73, 045112(2006).

    [43] X Huang, T R Paudel, S Dong et al. Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys Rev B, 92, 125201(2015).

    Xiaoshu Guo, Sandong Guo. Janus MSiGeN4 (M = Zr and Hf) monolayers derived from centrosymmetric β-MA2Z4: A first-principles study[J]. Journal of Semiconductors, 2021, 42(12): 122002
    Download Citation