• Photonics Research
  • Vol. 9, Issue 4, 558 (2021)
Jiachen Li1、2, Baoyu Zhang1、2, Sigang Yang1、2, Hongwei Chen1、2, and Minghua Chen1、2、*
Author Affiliations
  • 1Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China
  • 2Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1364/PRJ.412284 Cite this Article Set citation alerts
    Jiachen Li, Baoyu Zhang, Sigang Yang, Hongwei Chen, Minghua Chen. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector[J]. Photonics Research, 2021, 9(4): 558 Copy Citation Text show less
    References

    [1] M. Seimetz. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OTuM2(2008).

    [2] J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, K. Hayasaka. Compact, filtered diode laser system for precision spectroscopy. Opt. Lett., 32, 572-574(2007).

    [3] Y.-H. Lai, M.-G. Suh, Y.-K. Lu, B. Shen, Q. Yang, H. Wang, J. Li, S. H. Lee, K. Y. Yang, K. Vahala. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345-349(2020).

    [4] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, M. T. Hummon. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [5] J. Li, H. Lee, K. J. Vahala. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun., 4, 2097(2013).

    [6] . Continuous wave single frequency IR laser NPRO 125/126 series.

    [7] . Koheras adjustik e15.

    [8] M. Tran Anh, D. Huang, J. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photon., 4, 111101(2019).

    [9] K.-J. Boller, A. Rees, Y. Fan, J. Mak, R. Lammerink, C. Franken, P. van der Slot, D. Marpaung, C. Fallnich, J. Epping, R. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. Roeloffzen, M. Hoekman, E. Klein, A. Leinse, R. Heideman. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics, 7, 4(2019).

    [10] D. Huang, M. Tran Anh, J. Guo, J. Peters, T. Komljenovic, P. Morton, J. Bowers. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 6, 745-752(2019).

    [11] M. L. Davenport, S. Liu, J. E. Bowers. Integrated heterogeneous silicon/III-V mode-locked lasers. Photon. Res., 6, 468-478(2018).

    [12] A. Verdier, G. de Valicourt, R. Brenot, H. Debregeas, P. Dong, M. Earnshaw, H. Carrère, Y. Chen. Ultrawideband wavelength-tunable hybrid external-cavity lasers. J. Lightwave Technol., 36, 37-43(2018).

    [13] N. Kobayashi, K. Sato, M. Namiwaka, K. Yamamoto, S. Watanabe, T. Kita, H. Yamada, H. Yamazaki. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J. Lightwave Technol., 33, 1241-1246(2015).

    [14] Y. Fan, A. van Rees, P. J. M. van der Slot, J. Mak, R. M. Oldenbeuving, M. Hoekman, D. Geskus, C. G. H. Roeloffzen, K.-J. Boller. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express, 28, 21713-21728(2020).

    [15] Y. Zhu, S. Zeng, L. Zhu. Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a silicon nitride photonics platform. Photon. Res., 8, 375-380(2020).

    [16] Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, K.-J. Boller. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser. Conference on Lasers and Electro-Optics, JTh5C.9(2017).

    [17] A. Gil-Molina, O. Westreich, Y. Antman, X. Ji, A. L. Gaeta, M. Lipson. Robust hybrid III-V/Si3N4 laser with kHz-linewidth and GHz-pulling range. Conference on Lasers and Electro-Optics, STu3M.4(2020).

    [18] B. Stern, X. Ji, A. Dutt, M. Lipson. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 42, 4541-4544(2017).

    [19] Y. Li, Y. Zhang, H. Chen, S. Yang, M. Chen. Tunable self-injected Fabry–Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. J. Lightwave Technol., 36, 3269-3274(2018).

    [20] M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, J. E. Bowers. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photon. Rev., 8, 667-686(2014).

    [21] C. Xiang, W. Jin, J. Guo, C. Williams, A. M. Netherton, L. Chang, P. A. Morton, J. E. Bowers. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers. Opt. Express, 28, 19926-19936(2020).

    [22] A. Leinse, R. G. Heideman, E. J. Klein, R. Dekker, C. G. H. Roeloffzen, D. A. I. Marpaung. TriplexTM platform technology for photonic integration: applications from UV through NIR to IR. ICO International Conference on Information Photonics, 1-2(2011).

    [23] N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov, A. S. Voloshin, N. G. Pavlov, S. Koptyaev, M. L. Gorodetsky. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 25, 28167-28178(2017).

    [24] W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, L. Maleki. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 6, 7371(2015).

    [25] W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett., 35, 2822-2824(2010).

    [26] A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, W. Bogaerts. Backscattering in silicon microring resonators: a quantitative analysis. Laser Photon. Rev., 10, 420-431(2016).

    [27] S. Darmawan, Y. M. Landobasa, M. Chin. Pole–zero dynamics of high-order ring resonator filters. J. Lightwave Technol., 25, 1568-1575(2007).

    [28] M. Huang, S. Li, M. Xue, L. Zhao, S. Pan. Flat-top optical resonance in a single-ring resonator based on manipulation of fast- and slow-light effects. Opt. Express, 26, 23215-23220(2018).

    [29] G. T. Paloczi, J. Scheuer, A. Yariv. Compact microring-based wavelength-selective inline optical reflector. IEEE Photon. Technol. Lett., 17, 390-392(2005).

    [30] J. Zhu, K. S. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2010).

    [31] R. R. Galiev, N. M. Kondratiev, V. E. Lobanov, A. B. Matsko, I. A. Bilenko. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 14, 014036(2020).

    [32] J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express, 19, 3163-3174(2011).

    [33] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators(2020).

    [34] M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson, D. J. Blumenthal. 422 million Q planar integrated all-waveguide resonator with a 3.4 billion absorption limited Q and sub-MHz linewidth(2020).

    [35] J. Li, Z. Liu, Q. Geng, S. Yang, H. Chen, M. Chen. Method for suppressing the frequency drift of integrated microwave photonic filters. Opt. Express, 27, 33575-33585(2019).

    [36] T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, M. Dagenais. Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon. IEEE Photon. J., 8, 7102112(2016).

    [37] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni. Coupling strategies for silicon photonics integrated chips. Photon. Res., 7, 201-239(2019).

    [38] S. Camatel, V. Ferrero. Narrow linewidth CW laser phase noise characterization methods for coherent transmission system applications. J. Lightwave Technol., 26, 3048-3055(2008).

    [39] L. B. Mercer. 1/f frequency noise effects on self-heterodyne linewidth measurements. J. Lightwave Technol., 9, 485-493(1991).

    [40] P. Laurent, A. Clairon, C. Breant. Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron., 25, 1131-1142(1989).

    [41] H. Li, N. B. Abraham. Power spectrum of frequency noise of semiconductor lasers with optical feedback from a high-finesse resonator. Appl. Phys. Lett., 53, 2257-2259(1988).

    [42] N. Schunk, K. Petermann. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron., 24, 1242-1247(1988).

    [43] C. Henry. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron., 18, 259-264(1982).

    [44] E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki. Ultra-narrow line tunable semiconductor lasers for coherent lidar applications. Imaging and Applied Optics, JTu2C.3(2014).

    [45] L. Stern, W. Zhang, L. Chang, J. Guo, C. Xiang, M. A. Tran, D. Huang, J. D. Peters, D. Kinghorn, J. E. Bowers, S. B. Papp. Ultra-precise optical-frequency stabilization with heterogeneous III–V/Si lasers. Opt. Lett., 45, 5275-5278(2020).

    [46] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. Kippenberg, K. Vahala, J. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [47] A. Li, W. Bogaerts. Using backscattering and backcoupling in silicon ring resonators as a new degree of design freedom. Laser Photon. Rev., 13, 1800244(2019).

    [48] A. Li, W. Bogaerts. Reconfigurable nonlinear nonreciprocal transmission in a silicon photonic integrated circuit. Optica, 7, 7-14(2020).

    [49] K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, J. Vuckovic. Inverse-designed non-reciprocal pulse router for chip-based lidar. Nat. Photonics, 14, 369-374(2020).

    CLP Journals

    [1] Liwei Tang, Hongxiang Jia, Shuai Shao, Sigang Yang, Hongwei Chen, Minghua Chen. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity[J]. Photonics Research, 2021, 9(10): 1948

    Jiachen Li, Baoyu Zhang, Sigang Yang, Hongwei Chen, Minghua Chen. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector[J]. Photonics Research, 2021, 9(4): 558
    Download Citation