• Advanced Photonics
  • Vol. 5, Issue 2, 026005 (2023)
Haoyang Zhou1、†, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Zhensheng Tao*, Qiong He*, and Lei Zhou*
Author Affiliations
  • Fudan University, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Department of Physics, State Key Laboratory of Surface Physics, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.5.2.026005 Cite this Article Set citation alerts
    Haoyang Zhou, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Zhensheng Tao, Qiong He, Lei Zhou. Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves[J]. Advanced Photonics, 2023, 5(2): 026005 Copy Citation Text show less
    References

    [1] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [3] Q. Ma et al. Information metasurfaces and intelligent metasurfaces. Photon. Insights, 1, R01(2022).

    [4] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [5] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [6] J. Kim et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photonics, 4, 024001(2022).

    [7] Y. Guo et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photon. Insights, 1, R03(2022).

    [8] J. Gu et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [9] L. Cong, R. Singh. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv. Mater., 32, 2001418(2020).

    [10] Y. Yang et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics, 11, 390-395(2017).

    [11] P. Wu et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun., 10, 3654(2019).

    [12] Z. Miao et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [13] B. Zeng et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl., 7, 51(2018).

    [14] S. Biswas et al. Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science, 374, 448-453(2021).

    [15] Q. Li et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics, 11, 2085-2096(2022).

    [16] Y. Kim et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett., 19, 3961-3968(2019).

    [17] S. Abdollahramezani et al. Dynamic hybrid metasurfaces. Nano Lett., 21, 1238-1245(2021).

    [18] B. Chen et al. Electrically addressable integrated intelligent terahertz metasurface. Sci. Adv., 8, 1296(2022).

    [19] S. Zhang et al. Nonvolatile reconfigurable terahertz wave modulator. PhotoniX, 3, 7(2022).

    [20] F. Shu et al. Electrically driven tunable broadband polarization states via active metasurfaces based on joule‐heat‐induced phase transition of vanadium dioxide. Laser Photonics Rev., 15, 2100155(2021).

    [21] B. Chen et al. Programmable terahertz metamaterials with non‐volatile memory. Laser Photonics Rev., 16, 2100472(2022).

    [22] L. Li et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [23] S. M. Kamali et al. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev., 10, 1002-1008(2016).

    [24] W. Yang et al. Dynamic bifunctional metasurfaces for holography and color display. Adv. Mater., 33, 2101258(2021).

    [25] Q. Xu et al. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves. Adv. Photonics, 4, 016002(2022).

    [26] X. Cai et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photonics, 3, 036003(2021).

    [27] A. Komar et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics, 5, 1742-1748(2018).

    [28] I. Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [29] W. Li et al. Dual-color terahertz spatial light modulator for single-pixel imaging. Light Sci. Appl., 11, 191(2022).

    [30] Z. Shen et al. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photonics, 2, 036003(2020).

    [31] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [32] L. Nicholls et al. Designer photonic dynamics by using non-uniform electron temperature distribution for on-demand all-optical switching times. Nat. Commun., 10, 2967(2019).

    [33] K. Fan, I. Shadrivov, W. Padilla. Dynamic bound states in the continuum. Optica, 6, 169-173(2019).

    [34] S. Han et al. All‐dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 31, 1901921(2019).

    [35] J. Guo et al. Reconfigurable terahertz metasurface pure phase holograms. Adv. Opt. Mater., 7, 1801696(2019).

    [36] C. de Galarreta et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 7, 476-484(2020).

    [37] A. Tittl et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [38] B. Yang et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett., 19, 4221-4228(2019).

    [39] F. Yesilkoy et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 13, 390-396(2019).

    [40] H. Lin et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270-276(2019).

    [41] Y. Zhou et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl., 10, 138(2021).

    [42] M. Manjappa et al. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun., 9, 4056(2018).

    [43] S. Venkatesh et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron., 3, 785-793(2020).

    [44] K. Sengupta, T. Nagatsuma, D. M. Mittleman. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron., 1, 622-635(2018).

    [45] J. Zhang et al. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7, 265-271(2020).

    [46] Y. Hu et al. Pump‐color selective control of ultrafast all‐optical switching dynamics in metaphotonic devices. Adv. Sci., 7, 2000799(2020).

    [47] T. Cui, B. Bai, H. B. Sun. Tunable metasurfaces based on active materials. Adv. Funct. Mater., 29, 1806692(2019).

    [48] S. Wang et al. Nanoengineered spintronic-metasurface terahertz emitters enable beam steering and full polarization control. Nano Lett., 22, 10111-10119(2022).

    [49] C. Liu et al. Active spintronic-metasurface terahertz emitters with tunable chirality. Adv. Photonics, 3, 056002(2021).

    [50] S. Zhang et al. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light Sci. Appl., 10, 53(2021).

    [51] K. Fan et al. Phototunable dielectric Huygens’ metasurfaces. Adv. Mater., 30, 1800278(2018).

    [52] I. Al-Naib et al. Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial. Phys. Rev. B, 88, 195203(2013).

    [53] D. Riffe. Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements. J. Opt. Soc. Am. B, 19, 1092-1100(2002).

    [54] K. Sokolowski-Tinten, D. von der Linde. Generation of dense electron-hole plasmas in silicon. Phys. Rev. B, 61, 2643-2650(2000).

    [55] D. Aspnes, A. Studna. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B, 27, 985-1009(1983).

    [56] P. Lalanne et al. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev., 12, 1700113(2018).

    [57] J. Yang, H. Giessen, P. Lalanne. Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. Nano Lett., 15, 3439-3444(2015).

    [58] W. Yan, P. Lalanne, M. Qiu. Shape deformation of nanoresonator: a quasinormal-mode perturbation theory. Phys. Rev. Lett., 125, 013901(2020).

    [59] A. Kumar et al. Color-sensitive ultrafast optical modulation and switching of terahertz plasmonic devices. Adv. Opt. Mater., 6, 1800030(2018).

    [60] K. Papatryfonos et al. Refractive indices of MBE-grown AlxGa(1−x)As ternary alloys in the transparent wavelength region. AIP Adv., 11, 025327(2021).

    [61] S. Logothetidis et al. Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN. Phys. Rev. B, 50, 18017-18029(1994).

    [62] L. Cong et al. Temporal loss boundary engineered photonic cavity. Nat. Commun., 12, 6940(2021).

    Haoyang Zhou, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Zhensheng Tao, Qiong He, Lei Zhou. Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves[J]. Advanced Photonics, 2023, 5(2): 026005
    Download Citation