• Photonics Research
  • Vol. 11, Issue 9, 1524 (2023)
Liuhao Zhu1, Yuping Tai1、2, Hehe Li1, Huajie Hu1, Xinzhong Li1、2、7、*, Yangjian Cai3、4、8、*, and Yijie Shen5、6、9、*
Author Affiliations
  • 1School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 3Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 4Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
  • 5Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
  • 6Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences and The Photonics Institute, Nanyang Technological University, Singapore 637378, Singapore
  • 7e-mail: xzli@haust.edu.cn
  • 8e-mail: yangjian_cai@163.com
  • 9e-mail: yijie.shen@ntu.edu.sg
  • show less
    DOI: 10.1364/PRJ.490103 Cite this Article Set citation alerts
    Liuhao Zhu, Yuping Tai, Hehe Li, Huajie Hu, Xinzhong Li, Yangjian Cai, Yijie Shen. Multidimensional optical tweezers synthetized by rigid-body emulated structured light[J]. Photonics Research, 2023, 11(9): 1524 Copy Citation Text show less
    References

    [1] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [2] C. He, Y. Shen, A. Forbes. Towards higher-dimensional structured light. Light Sci. Appl., 11, 205(2022).

    [3] Y. Yang, Y. Ren, M. Chen, Y. Arita, C. Rosales-uzmán. Optical trapping with structured light: a review. Adv. Photon., 3, 034001(2021).

    [4] E. Otte, C. Denz. Optical trapping gets structure: structured light for advanced optical manipulation. Appl. Phys. Rev., 7, 041308(2020).

    [5] E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59, 2631-2634(1987).

    [6] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [7] T. T. Ngo, Q. Zhang, R. Zhou, J. G. Yodh, T. Ha. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell, 160, 1135-1144(2015).

    [8] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [9] G. Rui, Y. Li, S. Zhou, Y. Wang, B. Gu, Y. Cui, Q. Zhan. Optically induced rotation of Rayleigh particles by arbitrary photonic spin. Photon. Res., 7, 69-79(2019).

    [10] T. Chantakit, C. Schlickriede, B. Sain, F. Meyer, T. Weiss, N. Chattham, T. Zentgraf. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers. Photon. Res., 8, 1435-1440(2020).

    [11] L. W. Russell, E. C. Dossetor, A. A. Wood, D. A. Simpson, P. J. Reece. Optimizing optical tweezers experiments for magnetic resonance sensing with nanodiamonds. ACS Photon., 8, 1214-1221(2021).

    [12] Q. Sun, K. Dholakia, A. D. Greentree. Optical forces and torques on eccentric nanoscale core–shell particles. ACS Photon., 8, 1103-1111(2021).

    [13] W. Ding, T. Zhu, L. M. Zhou, C. W. Qiu. Photonic tractor beams: a review. Adv. Photon., 1, 024001(2019).

    [14] L. Zhu, M. Tang, H. Li, Y. Tai, X. Li. Optical vortex lattice: an exploitation of orbital angular momentum. Nanophotonics, 10, 2487-2496(2021).

    [15] P. G. Bassindale, D. B. Phillips, A. C. Barnes, B. W. Drinkwater. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers. Appl. Phys. Lett., 104, 163504(2014).

    [16] J. E. Melzer, E. McLeod. Fundamental limits of optical tweezer nanoparticle manipulation speeds. ACS Nano, 12, 2440-2447(2018).

    [17] E. Schaffer, S. F. Norrelykke, J. Howard. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir, 23, 3654-3665(2007).

    [18] Y. Cai, S. Yan, Z. Wang, R. Li, Y. Liang, Y. Zhou, X. Li, X. H. Yu, M. Lei, B. L. Yao. Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers. Opt. Express, 28, 12729-12739(2020).

    [19] C. H. Schmitz, J. P. Spatz, J. E. Curtis. High-precision steering of multiple holographic optical traps. Opt. Express, 13, 8678-8685(2005).

    [20] L. A. Shaw, R. M. Panas, C. M. Spadaccini, J. B. Hopkins. Scanning holographic optical tweezers. Opt. Lett., 42, 2862-2865(2017).

    [21] C. Lancey, M. Tehseen, V. Raducanu, F. Rashid, N. Merino, T. J. Ragan, C. G. Savva, M. S. Zaher, A. Shirbini, F. J. Blanco, S. M. Hamdan, A. De Biasio. Structure of the processive human Pol δ holoenzyme. Nat. Commun., 11, 1109(2020).

    [22] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. L. Gong, X. C. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl., 8, 90(2019).

    [23] L. Tong, V. D. Miljkovic, M. Kall. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett., 10, 268-273(2010).

    [24] X. Xu, C. Cheng, Y. Zhang, H. Lei, B. Li. Scattering and extinction torques: how plasmon resonances affect the orientation behavior of a nanorod in linearly polarized light. J. Phys. Chem. Lett., 7, 314-319(2016).

    [25] S. Kuhn, A. Kosloff, B. A. Stickler, F. Patolsky, K. Hornberger, M. Arndt, J. Millen. Full rotational control of levitated silicon nanorods. Optica, 4, 356-360(2017).

    [26] J. Ahn, Z. Xu, J. Bang, Y. Deng, T. M. Hoang, Q. Han, R. Ma, T. Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [27] K. B. Crozier. Quo vadis, plasmonic optical tweezers?. Light Sci. Appl., 8, 35(2019).

    [28] A. Curran, S. Tuohy, D. G. Aarts, M. J. Booth, T. Wilson, R. P. Dullens. Decoupled and simultaneous three-dimensional imaging and optical manipulation through a single objective. Optica, 1, 223-226(2014).

    [29] D. J. Armstrong, T. A. Nieminen, A. B. Stilgoe, A. V. Kashchuk, I. C. Lenton, H. Rubinsztein-Dunlop. Swimming force and behavior of optically trapped micro-organisms. Optica, 7, 989-994(2020).

    [30] D. Barredo, V. Lienhard, S. De Leseleuc, T. Lahaye, A. Browaeys. Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 561, 79-82(2018).

    [31] Y. Gao, R. Harder, S. H. Southworth, J. R. Guest, X. Huang, Z. Yan, L. E. Ocola, Y. Yifat, N. Sule, P. J. Ho. Three-dimensional optical trapping and orientation of microparticles for coherent x-ray diffraction imaging. Proc. Natl. Acad. Sci. USA, 116, 4018-4024(2019).

    [32] S. Hu, R. Hu, X. Dong, T. Wei, S. Chen, D. Sun. Translational and rotational manipulation of filamentous cells using optically driven microrobots. Opt. Express, 27, 16475-16482(2019).

    [33] M. Bugiel, E. Schäffer. Three-dimensional optical tweezers tracking resolves random sideward steps of the kinesin-8 Kip3. Biophys. J., 115, 1993-2002(2018).

    [34] J. A. Rodrigo, M. Angulo, T. Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories. Photon. Res., 9, 1-12(2021).

    [35] Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, M. Lei. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. Rep. Prog. Phys., 83, 032401(2020).

    [36] Y. Zhang, C. Min, X. Dou, X. Wang, H. P. Urbach, M. G. Somekh, X. Yuan. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl., 10, 59(2021).

    [37] J. Rodrigo, T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2, 812-815(2015).

    [38] J. Rodrigo, M. Angulo, T. Alieva. Programmable optical transport of particles in knot circuits and networks. Opt. Lett., 43, 4244-4247(2018).

    [39] J. Rodrigo, M. Angulo, T. Alieva. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles. Opt. Express, 26, 18608-18620(2018).

    [40] S. Lee, Y. Roichman, D. Grier. Optical solenoid beams. Opt. Express, 18, 6988-6993(2010).

    [41] E. Shanblatt, D. Grier. Extended and knotted optical traps in three dimensions. Opt. Express, 19, 5833-5838(2011).

    [42] E. T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies(1964).

    [43] M. F. -GarciaFerrer, A. D’Errico, H. Larocque, A. Sit, E. Karimi. Polychromatic electric field knots. Phys. Rev. Res., 3, 033226(2021).

    [44] H. Larocque, D. Sugic, D. Mortimer, A. J. Taylor, R. Fickler, R. W. Boyd, M. R. Dennis, K. Ebrahim. Reconstructing the topology of optical polarization knots. Nat. Phys., 14, 1079-1082(2018).

    [45] C. D. Parmee, M. R. Dennis, J. Ruostekoski. Optical excitations of Skyrmions, knotted solitons, and defects in atoms. Commun. Phys., 5, 54(2022).

    [46] Y. Shen, Y. Hou, N. Papasimakis, N. I. Zheludev. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun., 12, 5891(2021).

    [47] Z. Wan, Z. Wang, X. Yang, Y. Shen, X. Fu. Digitally tailoring arbitrary structured light of generalized ray-wave duality. Opt. Express, 28, 31043-31056(2020).

    [48] Y. Shen, X. Yang, D. Naidoo, X. Fu, A. Forbes. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica, 7, 820-831(2020).

    [49] Y. Shen, Z. Wang, X. Fu, D. Naidoo, A. Forbes. SU(2) Poincaré sphere: a generalized representation for multidimensional structured light. Phys. Rev. A, 102, 031501(2020).

    [50] Y. Shen, Q. Zhan, L. G. Wright, D. N. Christodoulides, F. W. Wise, A. E. Willner, Z. Zhao, K.-H. Zou, C.-T. Liao, C. Hernández-García, M. Murnane, M. A. Porras, A. Chong, C. Wan, K. Y. Bliokh, M. Yessenov, A. F. Abouraddy, L. J. Wong, M. Go, S. Kumar, C. Guo, S. Fan, N. Papasimakis, N. I. Zheludev, L. Chen, W. Zhu, A. Agrawal, S. W. Jolly, C. Dorrer, B. Alonso, I. Lopez-Quintas, M. López-Ripa, Í. J. Sola, Y. Fang, Q. Gong, Y. Liu, J. Huang, H. Zhang, Z. Ruan, M. Mounaix, N. K. Fontaine, J. Carpenter, A. H. Dorrah, F. Capasso, A. Forbes. Roadmap on spatiotemporal light fields. arXiv(2023).

    [51] C. Wan, Q. Cao, J. Chen, A. Chong, Q. Zhan. Toroidal vortices of light. Nat. Photonics, 16, 519-522(2022).

    [52] A. Zdagkas, C. McDonnell, J. Deng, Y. Shen, G. Li, T. Ellenbogen, N. Papasimakis, N. I. Zheludev. Observation of toroidal pulses of light. Nat. Photonics, 16, 523-528(2022).

    [53] M. Chen, S. Huang, X. Liu, Y. Chen, W. Shao. Optical trapping and rotating of micro-particles using the circular Airy vortex beams. Appl. Phys. B, 125, 184(2019).

    [54] P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, S. Tzortzakis. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat. Commun., 4, 2622(2013).

    [55] J. Pan, H. Wang, Y. Shen, X. Fu, Q. Liu. Airy coherent vortices: 3D multilayer self-accelerating structured light. Appl. Phys. Lett., 121, 141402(2022).

    [56] Y. Shen, S. Pidishety, I. M. Nape, A. Dudley. Self-healing of structured light: a review. J. Opt., 24, 103001(2022).

    [57] Z. Wan, H. Wang, Q. Liu, X. Fu, Y. Shen. Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photon., 10, 2149(2023).

    [58] Y. Shen. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light. J. Opt., 23, 124004(2021).

    [59] Y. Shen, Q. Zhang, P. Shi, L. Du, A. V. Zayats, X. Yuan. Topological quasiparticles of light: optical skyrmions and beyond. arXiv(2023).

    [60] A. V. Ponomarev, S. Denisov, H. Peter. AC-driven atomic quantum motor. Phys. Rev. Lett., 102, 230601(2009).

    [61] H. Zhang, X. Li, H. Ma, M. Tang, H. Li, J. Tang, Y. Cai. Grafted optical vortex with controllable orbital angular momentum distribution. Opt. Express, 27, 22930-22938(2019).

    [62] X. Z. Li, H. X. Ma, H. Zhang, M. M. Tang, H. H. Li, J. Tang, Y. S. Wang. Is it possible to enlarge the trapping range of optical tweezers via a single beam?. Appl. Phys. Lett., 114, 081903(2019).

    [63] A. Rohrbach. Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys. Rev. Lett., 95, 168102(2005).

    [64] L. Huang, H. Guo, J. Li, L. Ling, B. Feng, Z. Y. Li. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt. Lett., 37, 1694-1696(2012).

    Liuhao Zhu, Yuping Tai, Hehe Li, Huajie Hu, Xinzhong Li, Yangjian Cai, Yijie Shen. Multidimensional optical tweezers synthetized by rigid-body emulated structured light[J]. Photonics Research, 2023, 11(9): 1524
    Download Citation