• Journal of Inorganic Materials
  • Vol. 39, Issue 11, 1205 (2024)
Qianyuan LI1, Jiwei LI1, Yuhan ZHANG2, Yankang LIU1..., Yang MENG1, Yu CHU1, Yijia ZHU1, Nuoyan XU1, Liang ZHU1, Chuanxiang ZHANG2,* and Haijun TAO1,*|Show fewer author(s)
Author Affiliations
  • 11. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • 22. College of Material Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
  • show less
    DOI: 10.15541/jim20240132 Cite this Article
    Qianyuan LI, Jiwei LI, Yuhan ZHANG, Yankang LIU, Yang MENG, Yu CHU, Yijia ZHU, Nuoyan XU, Liang ZHU, Chuanxiang ZHANG, Haijun TAO. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205 Copy Citation Text show less
    References

    [1] G XING, N MATHEWS, S SUN et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 344(2013).

    [2] D SHI, V ADINOLFI, R COMIN et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 519(2015).

    [3] N G PARK. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 2423(2013).

    [4] C LIU, Y YANG, H CHEN et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science, 810(2023).

    [5] L ZHANG, L MEI, K WANG et al. Advances in the application of perovskite materials. Nano-Micro Lett., 177(2023).

    [6] H HUANG, P CUI, Y CHEN et al. 24.8%-Efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule, 2186(2022).

    [7] F SAHLI, J WERNER, B A KAMINO et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater., 820(2018).

    [8] . Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html

    [9] L K ONO, S LIU, Y QI. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed., 6676(2020).

    [10] B CHEN, P N RUDD, S YANG et al. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev., 3842(2019).

    [11] C RAN, J XU, W GAO et al. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev., 4581(2018).

    [12] Y CAI, L LIANG, P GAO. Promise of commercialization: carbon materials for low-cost perovskite solar cells. Chin. Phys. B, 018805(2018).

    [13] W ZHANG, J LUO, S LIU et al. Zirconia spacer: preparation by low temperature spray-coating and application in triple-layer perovskite solar cells. J. Inorg. Mater., 213(2023).

    [14] W FANG, L SHEN, H LI et al. Effect of film formation processes of NiOx mesoporous layer on performance of perovskite solar cells with carbon electrodes. J. Inorg. Mater., 1103(2023).

    [15] W Q WU, D CHEN, R A CARUSO et al. Recent progress in hybrid perovskite solar cells based on n-type materials. J. Mater. Chem. A, 10092(2017).

    [16] Y ZHOU, X LI, H LIN. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells. Small, 1902579(2020).

    [17] Y H CHU, L W MARTIN, M B HOLCOMB et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater., 478(2008).

    [18] L BO. Investigation on photocurrent polarity of a bulk heterojunction organic photovoltaic device using a ferroelectric thin film. Acta Phys.-Chim. Sin., 217(2012).

    [19] W QIN, W ALI, J WANG et al. Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity. Nat. Commun., 256(2023).

    [20] T CHOI, S LEE, Y J CHOI et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 63(2009).

    [21] L LOH, J BRISCOE, S DUNN. Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. Nanoscale, 7072(2014).

    [22] X LIU, Q ZHANG, J LI et al. Increase of power conversion efficiency in dye-sensitized solar cells through ferroelectric substrate induced charge transport enhancement. Sci. Rep., 17389(2018).

    [23] K FENG, X LIU, D SI et al. Ferroelectric BaTiO3 dipole induced charge transfer enhancement in dye-sensitized solar cells. J. Power Sources, 35(2017).

    [24] I KOVAČ, M MUŽEVIĆ, M V PAJTLER et al. Charge carrier dynamics across the metal oxide/BaTiO3 interfaces toward photovoltaic applications from the theoretical perspective. Surf. Interfaces, 102974(2023).

    [25] D BAO, X WU, L ZHANG et al. Preparation, electrical and optical properties of (Pb,Ca)TiO3 thin films using a modified Sol-Gel technique. Thin Solid Films, 30(1999).

    [26] H DENG, Y QIU, S YANG. General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips. J. Mater. Chem., 976(2009).

    Qianyuan LI, Jiwei LI, Yuhan ZHANG, Yankang LIU, Yang MENG, Yu CHU, Yijia ZHU, Nuoyan XU, Liang ZHU, Chuanxiang ZHANG, Haijun TAO. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205
    Download Citation