• Laser & Optoelectronics Progress
  • Vol. 52, Issue 11, 112701 (2015)
He Zhuanling*, Guo Dabo, and Wang Xiaokai
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.112701 Cite this Article Set citation alerts
    He Zhuanling, Guo Dabo, Wang Xiaokai. Security Capacity of Compound Wiretap Channel[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112701 Copy Citation Text show less
    References

    [1] Guo Dabo, Zhang Yanhuang, Wang Yunyan. Performance optimization for the reconciliation of Gaussian quantum key distribution[J]. Acta Optica Sinica, 2014, 34(1) : 0127001.

    [2] Wang Yunyan, Guo Dabo, Zhang Yanhuang, et al.. Algorithm of multidimensional reconciliation for continuousvariable quantum key distribution[J]. Acta Optica Sinica, 2014, 34(8): 0827002.

    [3] Zhu Feng, Wang Qin. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 2014, 34(6): 0627002.

    [4] Li Ke. Aspects of Quantum Channel Capacities[D]. Hefei: University of Science and Technology of China, 2009: 1-5.

    [5] P Sen. Achieving the Han-Kobayashi inner bound for the quantum interference channel[C]. IEEE International Symposium on Information Theory Proceedings, 2012: 736-740.

    [6] S Lloyd. Capacity of the noisy quantum channel[J]. Physical Review A, 1997, 55(3): 1613-1622.

    [7] R Konig, G Smith. Classical capacity of quantum thermal noise channels to within 1.45 bits[J]. Phys Rev Let, 2013, 110(4): 040501.

    [8] D Blackwell, L Breiman, A Thomasian. The capacity of a class of channels[J]. The Annals of Mathematical Statistics, 1959, 30(4): 1229-1241.

    [9] Yingbin Liang, Gerhard Kramer, H Vincent Poor, et al.. Compound wiretap channels[J]. EURASIP Journal on Wireless Communications and Networking, 2009, 2009(5): 142374.

    [10] I Bjelakovic, H Boche, J Sommerfeld. Capacity results for compound wiretap channels[C]. IEEE Information Theory Workshop, 2011: 60-64.

    [11] M M Wilde. Sequential decoding of a general classical- quantum channel[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2013, 469(2157): 20130259.

    [12] G Bagherikaram, A S Motahari, A K Khandani. The secrecy capacity region of the Gaussian MIMO broadcast channel[J]. IEEE Transactions on Information Theory, 2013, 59(5): 2673-2682.

    [13] Z Rezki, A Khisti, M Alouini. On the secrecy capacity of the wiretap channel with imperfect main channel estimation[J]. IEEE Transactions on Communications, 2014, 62(10): 3652-3664.

    [14] M M Wilde. From Classical to Quantum Shannon Theory[M]. Cambridye: Cambridge University Press, 2013: 363-386.

    [15] A Winter. Coding theorem and strong converse for quantum channels[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2481-2485.

    [16] T Ogawa, H Nagaoka. Making good codes for classical-quantum channel coding via quantum hypothesis testing[J]. IEEE Transactions on Information Theory, 2007, 53(6): 2261-2266.

    [17] R Ahlswede, A Winter. Strong converse for identification via quantum channels[J]. IEEE Transactions on Information Theory, 2002, 48(3): 569-579.

    [18] M A Nielsen, I L Chuang. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2000: 500-514.

    He Zhuanling, Guo Dabo, Wang Xiaokai. Security Capacity of Compound Wiretap Channel[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112701
    Download Citation