• High Power Laser Science and Engineering
  • Vol. 12, Issue 1, 010000e1 (2024)
Chen Hu1,2,3, Songlin Wan1,2,*, Guochang Jiang1,2, Haojin Gu1,2..., Yibin Zhang2, Yunxia Jin2, Shijie Liu1,2,3,5, Chengqiang Zhao2, Hongchao Cao2, Chaoyang Wei1,2,3,* and Jianda Shao1,2,3,4,5,*|Show fewer author(s)
Author Affiliations
  • 1Precision Optical Manufacturing and Testing Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai, China
  • 2Key Laboratory for High Power Laser Material of Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
  • 4Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
  • 5China-Russian Belt and Road Joint Laboratory on Laser Science, Shanghai, China
  • show less
    DOI: 10.1017/hpl.2023.81 Cite this Article Set citation alerts
    Chen Hu, Songlin Wan, Guochang Jiang, Haojin Gu, Yibin Zhang, Yunxia Jin, Shijie Liu, Chengqiang Zhao, Hongchao Cao, Chaoyang Wei, Jianda Shao, "Specifications and control of spatial frequency errors of components in two-beam laser static holographic exposure for pulse compression grating fabrication," High Power Laser Sci. Eng. 12, 010000e1 (2024) Copy Citation Text show less

    Abstract

    The large-aperture pulse compression grating (PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser; however, the size of the PCG manufactured by transmission holographic exposure is limited to large-scale high-quality materials. The reflective method is a potential way for solving the size limitation, but there is still no successful precedent due to the lack of scientific specifications and advanced processing technology of exposure mirrors. In this paper, an analytical model is developed to clarify the specifications of components, and advanced processing technology is adopted to control the spatial frequency errors. Hereafter, we have successfully fabricated a multilayer dielectric grating of 200 mm × 150 mm by using an off-axis reflective exposure system with Φ300 mm. This demonstration proves that PCGs can be manufactured by using the reflection holographic exposure method and shows the potential for manufacturing the meter-level gratings used in 100 petawatt class high-power lasers.
    I=I1+I2+2I1I2cosΦ, ((1))

    View in Article

    Φ(\boldsymbolr)=\boldsymbolk\boldsymbolr+Φ0. ((2))

    View in Article

    d=2(2π/k)=λ/(2sinθ). ((3))

    View in Article

    reflection:U0=Aei2πλ2W0,transmission:U0=Aei2πλ(n1)W0, ((4))

    View in Article

    Uz=F1(F(U0)exp(i2πλz1(λfx)2(λfy)2)), ((5))

    View in Article

    U0A(1+i4πλW0). ((6))

    View in Article

    setΦ(fx,fy;z)=2πλz(1(λfx)2(λfy)21)πλz(fx2+fy2),Uz=AF1((δ(fx,fy)+i4πFW0λδ(fxa,fyb)dadb)ei(Φ+2πzλ)) =Aei2πzλ2π(δ(fx,fy)+i4πλFW0eiΦδ(fxa,fyb)dadb)ei2π(fxx+fyy)dfxdfy, ((7))

    View in Article

    fromFW0(fx,fy)=FW0(fx,fy)forrealW0:setFW0(fx,fy)=r(fx,fy)eiθ(fx,fy), ()

    View in Article

    Uz=ei2πzλ(1+12π0i4πλr(a,b)eiΦ(a,b;z)(ei(2π(ax+by)+θ(a,b))+ei(2π(ax+by)+θ(a,b)))dadb)=Aei2πzλ(1+12π08πλr(a,b)ei(Φ(a,b;z)+π2)cos(2π(ax+by)+θ(a,b))dadb), ((8))

    View in Article

    Uz=UzUz=A(1402λr(a,b)sin(Φ(a,b;z))cos(2π(ax+by)+θ(a,b))dadb+40(2λr(a,b))2cos2(2π(ax+by)+θ(a,b))dadb)12 ()

    View in Article

     A(112π016πλr(a,b)sin(Φ(a,b;z))cos(2π(ax+by)+θ(a,b))dadb)12 A(1F1(F(4πW0λ)sin(Φ(fx,fy;z)))). ((9))

    View in Article

    forperiodicfigureerrorW0=Awavesin(2πΛx),UzA14πAwaveλF1(F(sin(2πΛx))sin(Φ(fx,fy;z)))=14πAwaveλF1(δ(fx±1Λ,fy)sin(Φ(fx,fy;z)))=1sin(πλz1Λ2)Talbotmodulation4πAwaveλsin(2πΛx), ((10))

    View in Article

    $$\begin{align} &\tfrac{4\pi }{\lambda}\cdot 3\cdot \mathrm{RMS}\left(\mathtt{\mathcal{F}}(\mathrm{err}_{\mathrm{MHSF}})\cdot \sin \left(\Phi \left({f}_r\right)\right)\right)<5\%\nonumber\[4pt] &{}\kern2.16em \mathrm{with}\kern0.36em {f}_r=\sqrt{f_x^2+{f}_y^2}\in \left(\tfrac{1}{\sqrt{30\lambda z}},\tfrac{1}{\lambda}\right)\nonumber\[4pt]&\quad\Rightarrow \tfrac{12\pi }{\lambda}\cdot \sqrt{\mathrm{RMS}^2(\mathrm{err}_{\mathrm{MHSF}})\cdot \tfrac{1}{2\pi }{\scriptstyle\int}_{-\pi}^{\pi }{\sin}^2\left(\Phi \right)\mathrm{d}\Phi}<5\%\nonumber\[4pt]&\quad\Rightarrow {\mathrm{RMS}^2}(\mathrm{err}_{\mathrm{MHSF}})<\lambda /533,\kern0.48em \tfrac{1}{\sqrt{30\lambda z}}((11))

    View in Article

    Chen Hu, Songlin Wan, Guochang Jiang, Haojin Gu, Yibin Zhang, Yunxia Jin, Shijie Liu, Chengqiang Zhao, Hongchao Cao, Chaoyang Wei, Jianda Shao, "Specifications and control of spatial frequency errors of components in two-beam laser static holographic exposure for pulse compression grating fabrication," High Power Laser Sci. Eng. 12, 010000e1 (2024)
    Download Citation